首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we discuss a scheme for dealing with Neumann and mixed boundary conditions using a compact stencil. The resulting compact algorithm for solving systems of nonlinear reaction‐diffusion equations is fourth‐order accurate in both the temporal and spatial dimensions. We also prove that the standard second‐order approximation to zero Neumann boundary conditions provides fourth‐order accuracy when the nonlinear reaction term is independent of the spatial variables. Numerical examples, including an application of this algorithm to a mathematical model describing frontal polymerization process, are presented in the article to demonstrate the accuracy and efficiency of the scheme. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

2.
The purpose of the study is to analyze the time‐fractional reaction‐diffusion equation with nonlocal boundary condition. The proposed model is used to predict the invasion of tumor and its growth. Further, we establish the existence and uniqueness of a weak solution of the proposed model using the Faedo‐Galerkin method and compactness arguments.  相似文献   

3.
This article studies a fully adaptive finite difference method for solving quenching‐type nonlinear reaction‐diffusion equations over circular domains. Although an auxiliary condition at the origin and radial symmetry are imposed, adaptations are accomplished via arc‐length‐based monitoring functions in space and time, respectively. The monotonicity and positivity of the numerical solution are proved following a suitable grid constraint, and the numerical stability is ensured in the von Neumann sense. Theoretical bounds of the critical quenching radius are obtained and then refined through the computation. Computational examples are provided to illustrate the effectiveness and plausibility of the new adaptive computational procedure developed. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 472–489, 2014  相似文献   

4.
A boundary element method (BEM) approach has been developed to solve the time‐dependent 1D advection‐diffusion equation. The 1D solution is part of a 3D numerical scheme for solving advection‐diffusion (AD) problems in fractured porous media. The full 3D scheme includes a 3D solution for the porous matrix, which is coupled with a 2D solution for fractures and a 1D solution for fracture intersections. As the hydraulic conductivity of the fracture intersections is usually higher than the hydraulic conductivity of the fractures and by at least one order of magnitude higher than the hydraulic conductivity of the porous matrix, the fastest flow and solute transport occurs in the fracture intersections. Therefore it is important to have an accurate and stable 1D solution of the transient AD problems. This article presents two different 1D BEM formulations for solution of the AD problems. The particular advantage of these formulations is that they provide one of the most straightforward and simplest ways to couple multiple intersecting 2D Boundary Element problems discretized with linear discontinuous elements. Both formulations are tested and compared for accuracy, stability, and consistency. The analysis helps to select the more suitable formulations according to the properties of the problem under consideration. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

5.
We develop 2‐grid schemes for solving nonlinear reaction‐diffusion systems: where p = (p, q) is an unknown vector‐valued function. The schemes use discretizations based on a mixed finite‐element method. The 2‐grid approach yields iterative procedures for solving the nonlinear discrete equations. The idea is to relegate all the Newton‐like iterations to grids much coarser than the final one, with no loss in order of accuracy. The iterative algorithms examined here extend a method developed earlier for single reaction‐diffusion equations. An application to prepattern formation in mathematical biology illustrates the method's effectiveness. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 589–604, 1999  相似文献   

6.
The two-variable reaction diffusion equations on the spherical domain is considered and simulated, using the semi-implicit Euler finite difference method. It is shown that the method keeps the kinetics from overshooting the stable branches when a large time step is used in the simulation.  相似文献   

7.
In this study, we examine the solution profile of some reaction‐diffusion systems. The systems are derived after approximating the Arrhenius term in our system which models the sintering process and consists of two coupled equations in terms of two unknowns. The unknowns describe the temperature of the solid and the concentration of the fuel. We show the evolution over time of local temperature hot spots. The key idea is to use ‘microscopic scaling’ around the temperature hot spot at the initial time along with asymptotic analysis. We also provide some numerical results that support the efficiency of our analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Our aim in this paper is to study the well‐posedness of a singular reaction‐diffusion equation which is related with brain lactate kinetics, when spatial diffusion is taken into account. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
We consider a reaction‐diffusion equation with a traveling heat source on an unbounded domain. The numerical simulation of the problem is difficult because of the moving singularity, the blow‐up phenomenon, and the delta function in the equation. Because we are only interested in the solution behavior near the heat source, we choose a bounded moving domain which contains the heat source and has the same speed as the source. Local absorbing boundary conditions are constructed on the boundaries of the moving domain. Then, we transform the moving domain to a fixed one. At last, a special moving collocation method is adopted. The new method is much simpler than the existing moving finite difference methods. Moreover, numerical experiments illustrate the accuracy and efficiency of our moving collocation method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

10.
The nonlinear reaction‐diffusion system in an unbounded domain is studied. It is proven that, under some natural assumptions on the nonlinear term and on the diffusion matrix, this system possesses a global attractor ?? in the corresponding phase space. Since the dimension of the attractor happens to be infinite, we study its Kolmogorov's ?‐entropy. Upper and lower bounds of this entropy are obtained. Moreover, we give a more detailed study of the attractor for the spatially homogeneous RDE in ?n. In this case, a group of spatial shifts acts on the attractor. In order to study the spatial complexity of the attractor, we interpret this group as a dynamical system (with multidimensional “time” if n > 1) acting on a phase space ??. It is proven that the dynamical system thus obtained is chaotic and has infinite topological entropy. In order to clarify the nature of this chaos, we suggest a new model dynamical system that generalizes the symbolic dynamics to the case of the infinite entropy and construct the homeomorphic (and even Lipschitz‐continuous) embedding of this system into the spatial shifts on the attractor. Finally, we consider also the temporal evolution of the spatially chaotic structures in the attractor and prove that the spatial chaos is preserved under this evolution. © 2003 Wiley Periodicals, Inc.  相似文献   

11.
In this article, an efficient fourth‐order accurate numerical method based on Padé approximation in space and singly diagonally implicit Runge‐Kutta method in time is proposed to solve the time‐dependent one‐dimensional reaction‐diffusion equation. In this scheme, we first approximate the spatial derivative using the second‐order central finite difference then improve it to fourth‐order by applying Padé approximation. A three stage fourth‐order singly diagonally implicit Runge‐Kutta method is then used to solve the resulting system of ordinary differential equations. It is also shown that the scheme is unconditionally stable, and is suitable for stiff problems. Several numerical examples are solved by the scheme and the efficiency and accuracy of the new scheme are compared with two widely used high‐order compact finite difference methods. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1423–1441, 2011  相似文献   

12.
This paper develops an abstract theory for subdifferential operators to give existence and uniqueness of solutions to the initial‐boundary problem P for the nonlinear diffusion equation in an unbounded domain ( ), written as which represents the porous media, the fast diffusion equations, etc, where β is a single‐valued maximal monotone function on , and T>0. In Kurima and Yokota (J Differential Equations 2017; 263:2024‐2050 and Adv Math Sci Appl 2017; 26:221‐242) existence and uniqueness of solutions for P were directly proved under a growth condition for β even though the Stefan problem was excluded from examples of P . This paper completely removes the growth condition for β by confirming Cauchy's criterion for solutions of the following approximate problem ε with approximate parameter ε>0: which is called the Cahn‐Hilliard system, even if ( ) is an unbounded domain. Moreover, it can be seen that the Stefan problem excluded from Kurima and Yokota (J Differential Equations 2017; 263:2024‐2050 and Adv Math Sci Appl 2017; 26:221‐242) is covered in the framework of this paper.  相似文献   

13.
We present a scheme for solving two‐dimensional, nonlinear reaction‐diffusion equations, using a mixed finite‐element method. To linearize the mixed‐method equations, we use a two grid scheme that relegates all the Newton‐like iterations to a grid ΔH much coarser than the original one Δh, with no loss in order of accuracy so long as the mesh sizes obey . The use of a multigrid‐based solver for the indefinite linear systems that arise at each coarse‐grid iteration, as well as for the similar system that arises on the fine grid, allows for even greater efficiency. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 317–332, 1999  相似文献   

14.
Stochastic averaging principle is a powerful tool for studying qualitative analysis of multiscale stochastic dynamical systems. In this paper, we will establish an averaging principle for stochastic reaction‐diffusion‐advection equations with slow and fast time scales. Under suitable conditions, we show that the slow component strongly converges to the solution of the corresponding averaged equation.  相似文献   

15.
In this article, we extend the fourth‐order compact boundary scheme in Liao et al. (Numer Methods Partial Differential Equations 18 (2002), 340–354) to a 3D problem and then combine it with the fourth‐order compact alternating direction implicit (ADI) method in Gu et al. (J Comput Appl Math 155 (2003), 1–17) to solve the 3D reaction‐diffusion equation with Neumann boundary condition. First, the reaction‐diffusion equation is solved with a compact fourth‐order finite difference method based on the Padé approximation, which is then combined with the ADI method and a fourth‐order compact scheme to approximate the Neumann boundary condition, to obtain fourth order accuracy in space. The accuracy in the temporal dimension is improved to fourth order by applying the Richardson extrapolation technique, although the unconditional stability of the numerical method is proved, and several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed new algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

16.
An efficient higher‐order finite difference algorithm is presented in this article for solving systems of two‐dimensional reaction‐diffusion equations with nonlinear reaction terms. The method is fourth‐order accurate in both the temporal and spatial dimensions. It requires only a regular five‐point difference stencil similar to that used in the standard second‐order algorithm, such as the Crank‐Nicolson algorithm. The Padé approximation and Richardson extrapolation are used to achieve high‐order accuracy in the spatial and temporal dimensions, respectively. Numerical examples are presented to demonstrate the efficiency and accuracy of the new algorithm. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 340–354, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10012  相似文献   

17.
In this paper, we consider the initial boundary value problem for a class of reaction‐diffusion systems with generalized coupled source terms. The assumption on the coupled source terms refers to the single equations and includes many kinds of polynomial growth cases. Under this assumption, the reaction‐diffusion systems have a variational structure, which is the foundation of constructing the potential wells to classify the initial data. In subcritical energy level and critical energy level, which are divided from potential well theory, the global existence solution, blow‐up in finite time solution, and asymptotic behavior of solution are obtained, respectively. Furthermore, we show the sufficient conditions of global well posedness with supercritical energy level by combining with comparison principle and semigroup theory.  相似文献   

18.
This article describes a numerical method based on the boundary integral equation and dual reciprocity method(DRM) for solving the one‐dimensional advection‐diffusion equations. The concept of DRM is used to convert the domain integral to the boundary that leads to an integration free method. The time derivative is approximated by the time‐stepping method. Numerical results are presented for some problems to demonstrate the usefulness and accuracy of the new approach. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

19.
Some Reaction‐Diffusion equations present solutions of the traveling wave form. In this work, we present an implicit numerical scheme based on finite difference originally proposed to solve hyperbolic equations. Then, this method is improved using a pseudospectral approach to discretize the spatial variable. The results prove that this new scheme is useful to solve equations of the parabolic type which presents traveling wave solutions. In particular, problems where a reduction in the number of discretization points and an increase of the size of the time step play an important role in their solution are considered. The implicit scheme presented involves the solution of linear systems only. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 86–105, 2016  相似文献   

20.
In this work, we study the numerical simulation of the one‐dimensional reaction‐diffusion system known as the Gray‐Scott model. This model is responsible for the spatial pattern formation, which we often meet in nature as the result of some chemical reactions. We have used the trigonometric quartic B‐spline (T4B) functions for space discretization with the Crank‐Nicolson method for time integration to integrate the nonlinear reaction‐diffusion equation into a system of algebraic equations. The solutions of the Gray‐Scott model are presented with different wave simulations. Test problems are chosen from the literature to illustrate the stationary waves, pulse‐splitting waves, and self‐replicating waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号