首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two high molecular weight linear polyesters were investigated to gain insight in how the photophysics of electron donor‐(σ‐spacer)‐electron acceptor (DσA) compounds are affected by incorporation into a polymer. They were prepared by condensation of either adipoyl or sebacoyl chloride with a diol that was functionalized with an N,N‐dialkylaniline donor, a cyclohexyl type σ‐spacer, and a 1,1‐dicyanovinyl acceptor. The solubility, which is very low, and the thermal properties of the polyesters are dictated by physical crosslinking as a consequence of interchain donor‐acceptor interactions. Charge transfer (CT) absorption and emission are observed, which involve CT between DσA moieties of different chains rather than CT processes within a single DσA unit. As a result, the photophysics of the DσA units in the polyesters differs strongly from that of similar DσA compounds in solution. Upon swelling the polymers with THF, the CT fluorescence disappears partly. Analogous polymers containing only an N,N‐dialkylaniline donor display dual fluorescence; one band reflects local emission, while the other is attributed to excimer emission. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4775–4784, 2004  相似文献   

2.
The present study deals with the synthesis of N‐phenylacetamide‐functionalized carbazole derivatives and their antibacterial, anti‐inflammatory, and antioxidant assays. In vitro antibacterial studies of synthesized compounds shows prominent activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. In addition, in silico molecular docking studies corroborated that the methyl substituent ( 3g ), ( 3h ), and ( 3i ) showed promising activity with lower ∆G (kcal/mol) values. This study envisages that these compounds can serve as a new leading template in the chemotherapy of various bacterial ailments.  相似文献   

3.
A new polyester, poly‐(ethylene oxamide‐N,N′‐diacetate) (PEODA), containing glycine moiety was synthesized by the reaction of oxamide‐N,N′‐diacetic acid and ethylene glycol and its polymer–metal complexes were synthesized with transition metal ions. The monomer oxamide‐N,N′‐diacetic acid was prepared by the reaction of glycine and diethyl oxalate. The polymer and its metal complexes were characterized by elemental analysis and other spectroscopic techniques. The in vitro antibacterial activities of all the synthesized polymers were investigated against some bacteria and fungi. The analytical data revealed that the coordination polymers of Mn(II), Co(II) and Ni(II) are coordinated with two water molecules, which are further supported by FTIR spectra and TGA data. The polymer–metal complexes showed excellent antibacterial activities against both types of microorganisms; the polymeric ligand was also found to be effective but less so than the polymer–metal complexes. On the basis of the antimicrobial behavior, these polymers may be used as antifungal and antifouling coating materials in fields like life‐saving medical devices and the bottoms of ships. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Three kinds of low molecular weight unsaturated polyesters containing carbon-carbon double bonds were synthesized by the reaction of poly (ε-caprolactone) diol or D,L-lactide and glycolic acid with maleic anhydride or fumaric acid. These functionalized polymers were thermally crosslinked in the presence of radical initiator to prepare the crosslinked polymers available as a matrix resin for biomedical composites. Hydrolysis of the crosslinked polyesters was investigated in buffer solution at 37°C.  相似文献   

5.
Copolyesters have been synthesized by interfacial polycondensation of 2,2-bis(4-hydroxyphenyl)-propane or phenolphthalein as aromatic diol and ethylene glycol or polyethylene glycol as aliphatic diol in various mole ratios with terephthaloyl or isophthaloyl chloride. Chemical compositions, dilute solution viscosities and solubility behaviours of these polymers have been investigated. The introduction of aliphatic diol in aromatic polyesters influences Tg, softening point, chemical resistance and thermal stability.  相似文献   

6.
The production of new biocidal polyester Schiff base metal complexes [PESB–M(II)] via polycondensation reaction between chelated Schiff base diol and adipoyl chloride is reported. The resulting polyesters were characterized by physico-chemical and spectroscopic methods. The analytical data of all the synthesized polyesters were found to be in good agreement with 1:1 molar ratio of chelated Schiff base diol to adipoyl chloride. Thermogravimetric analyses of synthesized polyesters were studied by TG in nitrogen atmosphere up to 1073 K and results indicate that Cu(II) polyester complex exhibited better heat resistant properties than the other polyesters complexes. Magnetic moment and UV–visible spectra were examined to explain the structure of all the polyesters which reveled that Mn(II), Co(II), Ni(II) have octahedral geometry while Cu(II) possess a distorted octahedral geometry. These newly developed polyesters were also tested for their antibacterial activity against several bacteria and fungi. Among all the tested compounds PESB–Cu(II) possess the highest bactericidal and fungicidal activity.  相似文献   

7.
New series of Schiff bases derived from o‐substituted thiosemicarbazides and 8‐formyl‐7‐hydroxy‐4‐methylcoumarin have been synthesized and their coordination tendency toward Co(II), Ni(II), and Cu(II) metal ions is studied. Analytical, spectral (IR, UV‐Vis, ESR, and FAB‐mass), magnetic, and thermal studies suggests octahedral geometry of the type ML2 for all the Co(II), Ni(II), and Cu(II) complexes. The complexes are soluble in DMF/DMSO and are non‐electrolytes. The Schiff bases and their metal complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Pseudomonas aeruginosa) and antifungal activities (Aspergillus flavus, Aspergillus niger, and Cladosporium) by minimum inhibitory concentration method. DNA cleavage is studied by agarose gel electrophoresis method. Metal (II) complexes show good anthelmintic activity when compared to Schiff bases.  相似文献   

8.
There is currently an urgent need for the development of new antibacterial agents to combat the spread of antibiotic‐resistant bacteria. We explored the synthesis and antibacterial activities of novel, sugar‐functionalized phosphonium polymers. While these compounds exhibited antibacterial activity, we unexpectedly found that the control polymer poly(tris(hydroxypropyl)vinylbenzylphosphonium chloride) showed very high activity against both Gram‐negative Escherichia coli and Gram‐positive Staphylococcus aureus and very low haemolytic activity against red blood cells. These results challenge the conventional wisdom in the field that lipophilic alkyl substituents are required for high antibacterial activity and opens prospects for new classes of antibacterial polymers.  相似文献   

9.
Antimicrobial polyesters containing Schiff-base metal complexes (PSB) were prepared by polycondensation of adipoyl chloride with chelated Schiff-base diol {bis-(2-hydroxy-5-methylol-benzaldehyde)ethylenediamine}. All the metal chelated polyesters were characterized by elemental analysis, UV–Visible, FTIR, 13C and 1H NMR spectra and thermogravimetric analysis. The analytical data of the polyesters agreed with 1 : 1 molar ratio (metal chelated diols to adipoyl chloride). The geometry of the chelated polyesters was confirmed by magnetic susceptibility measurements and UV–Visible spectroscopy. The thermal behaviors of these chelated polyesters were studied by TGA (Thermogravimetric analyzer) in a nitrogen atmosphere up to 800°C. The TGA results revealed that the Cu(II) chelated polyester has better heat resistant properties than the other polyesters. The antimicrobial properties of these polyesters were investigated with agar diffusion methods against selected microorganisms Bacillus subtelillis, Bacillus megaterium, Streptococcus aureus, Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, Shigella boydii and for antifungal activity against Candida albicans, Trichophyton longifusus, Aspergillus flavus, Aspergillus niger, Fusarium solani, Microsporum canis, Puccinia graminis. The antimicrobial activity of these polyesters was higher than standard drugs Kanamycin and Miconazol.  相似文献   

10.
Ferrocene‐based polymers are characterized by their electrochemical activity, good redox properties, thermal, photochemical stability, and liquid crystallinity, and thus they have various applications in different fields. A comprehensive investigation on the synthesis and properties of three novel main‐chain ferrocene‐based polyesters with azobenzene in the side chain (MFPAS) was carried out. The main‐chain ferrocene‐based polyester, poly(N‐phenyldiethanolamine 1,1′‐ferrocene dicarboxylate (PPFD), was synthesized via the solution polycondensation reaction of 1,1′‐ferrocenedicarbonyl chloride with phenyldiethanolamine (PDE). The novel MFPAS were synthesized via the post‐polymerization azo‐coupling reaction of PPFD with three different 4‐substituted anilines including 4‐nitroaniline, 4‐aminobenzoic acid, and 4‐aminobenzonitrile to produce 4‐nitrophenylazo‐functionalized‐PPFD (PPFD‐NT), 4‐carboxyphenylazo‐functionalized‐PPFD (PPFD‐CA), and 4‐cyanophenylazo‐functionalized‐PPFD (PPFD‐CN), respectively. All the synthesized polymers were characterized by 1H NMR spectroscopy, Fourier transform infrared spectroscopy, and UV–visible spectroscopy. In addition, powder X‐ray diffraction patterns were measured for the synthesized polymers. The photoisomerization of the MFPAS was studied. The thermal properties of the MFPAS were studied using thermogravimetric analysis and differential scanning calorimetry. PPFD‐CA and PPFD‐CN were found to be more thermally stable than PPFD‐NT. Finally, the liquid‐crystalline properties of PPFD and the MFPAS were examined using polarized optical microscope. It was found that all the polymers possessed nematic phases and exhibited textures with schlieren disclinations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The design of molecularly recyclable polymers contributes to a possible solution to the end-of-use issue of polymeric materials and gives a closed-loop approach toward a circular materials economy. The biobased semi-aromatic polyesters (e.g., poly(phloretic acid), poly(dihydroferulic acid), and poly(dihydro-sinapinic acid)), described in this paper, can be derived entirely from biomass (mainly lignin). The described polyesters exhibit thermal properties similar to those of certain commodity polymeric materials. These polyesters with ligno-phytochemicals as monomer have so far demonstrated complete and almost infinite molecular recyclability with a loss of total mass less than 5% per cycle. Moreover, molecular weight and thermal properties (Tg, Tm, and Tcryst) of the tenth generation polymeric material are identical to those of the first generation.  相似文献   

12.
Polymers with multiple tunable responses were achieved by incorporating boronic acid functionality along the backbone of a thermoresponsive polymer. The inherent Lewis acidity and diol‐sensitivity of boronic acid moieties allowed these polymers to respond to changes in pH and glucose concentration. Through reversible addition‐fragmentation chain transfer copolymerization of boronic acid‐containing monomers with N‐isopropylacrylamide, well‐defined block copolymers were synthesized containing a hydrophilic N,N‐dimethylacrylamide block and a second, responsive block with temperature‐dependent water solubility, making the resulting polymers capable of self‐assembly into nanostructures upon heating. By incorporating boronic acids within the thermoresponsive block, the cloud point of the polymer depended on the solution conditions, including pH and diol concentration, allowing tunable cloud point ranges. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2309–2317  相似文献   

13.
The design of polymeric biomaterials with long‐lasting X‐ray contrast could advance safe and effective implants and contrast agents. Herein, a new set of wholly aliphatic, iodinated polyesters are synthesized and evaluated as high‐contrast biomaterials and nanoparticle contrast agents for general computed tomography imaging. A single iodinated monomer is used to synthesize a variety of aliphatic polyesters with tunable thermal and mechanical properties. These iodinated polyesters are end‐functionalized with a photocurable methacrylate group, which allows easy processability. The resulting materials exhibit no cytotoxicity and are radiopaque, containing over 40% iodine by weight after processing. The polymers can be formulated into lipid–polymer hybrid nanoparticles using a modified nanoprecipitation method. Initial studies indicate that these nanoparticles show good continual contrast over 60 minutes with no uptake into the kidneys. The work presented here illustrates a novel platform for iodinated polyesters that exhibit high radiopacity and processability, low cost, and no cytotoxicity. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2171–2177  相似文献   

14.
Monomers with phosphorus-containing substituents were incorporated into aromatic-aliphatic polyesters to develop polymeric halogen-free flame retardants as additives for poly(butylene terephthalate) (PBT). They were built into the polyester backbone of PBT substituting 1,4-butane diol as monomer by phosphorus-containing aromatic-aliphatic diols. Starting from 10-(2,5-bis(2-hydroxyethoxy)phenyl)-9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide (DOPO-HQ-GE), the chemical structure of the phosphorus monomers was systematically varied resulting in new polymers with diphenyl phosphine oxide substituents and bridged phosphine oxide units. The polymers were prepared by transesterification polycondensation in the melt in lab-scale as well as in a 2.4 l-autoclave. The properties of the polyesters were determined and compared to the DOPO-based polyester with respect to the achieved molar mass and polydispersity, solid state structure, glass transition temperature, thermal stability and combustion behavior.It was found that the different phosphorus substituents lead to different glass transition temperatures. The polymers containing bridged phosphorus structural units showed higher glass transition temperatures Tg and resulted in higher char yields after thermal decomposition. Both phosphine oxide structures showed only one-step decomposition with a shoulder at the end of the step. In contrast, two separate steps were observed in the polyesters with DOPO-substituents. The results indicated that the phosphorus polyesters under discussion are suitable to adjust the flame retarding mechanism.  相似文献   

15.
A new cardo diacid chloride, 1,1‐bis‐[4‐(4‐chlorocarboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane ( 4 ), was synthesized from 1,1‐bis‐[4‐(4‐carboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane in refluxing thionyl chloride. Subsequently, various new polyesters were prepared from 4 with various bisphenols by solution polycondensation in nitrobenzene using pyridine as a hydrogen chloride quencher at 150 °C. These polyesters were produced with inherent viscosities of 0.32–0.50 dL · g?1. Most of these polyesters exhibited excellent solubility in a variety of solvents such as N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. These polymers showed glass‐transition temperatures (Tg's) between 144 and 197 °C. The polymer containing the adamantane group exhibited the highest Tg value. The 10% weight loss temperatures of the polyesters, measured by thermogravimetric analysis, were found to be in the range of 426–451 °C in nitrogen. These cardo polyesters exhibited higher Tg's and better solubility than bisphenol A‐based polyesters. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2951–2956, 2001  相似文献   

16.
High molecular weight polyesters containing thermally curable benzoxazine units in the main chain have been synthesized. For this purpose, first the diol functional monomer is synthesized through the Mannich and subsequent ring closure reactions of bisphenol‐A, paraformaldehyde, and 5‐amino‐1‐pentanol. Polycondensation of the resulting benzoxazine and pyromellitic dianhydride or 4‐4′‐(hexafluoroisopropylidene) diphatalic anhydride with or without dibutyltin laurate yielded the corresponding polyesters with the molecular weights between 5800 and 7000 Da. The structures of the precursor diol monomer and the resulting polyesters are confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy analysis. Curing behavior of both the monomer and polymers has also been studied by differential scanning calorimetry. Flexible films of the polyesters were obtained by solvent casting on tin plates and crosslinked by heating in the absence of any catalyst. The cured films exhibited high flexibility and adhesion on the tin plates as determined by ASTM and DIN tests. Thermal properties of the cured polymers were also investigated by thermogravimetric analysis (TGA). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4279–4284, 2010  相似文献   

17.
In this work, three alipharomatic polyesters—poly(propylene terephthalate) (PPT), poly(propylene isophthalate) (PPI), and poly(propylene naphthalate) (PPN)—were prepared and studied with the aliphatic diol 1,3‐propanediol and the corresponding aromatic diacids. Their synthesis was performed by the two‐stage melt polycondensation method in a glass batch reactor. The thermal characterization of these polyesters was carried out with different thermal techniques such as simultaneous thermogravimetry/differential thermal analysis, thermomechanical analysis (TMA), and dynamic thermomechanical analysis. From the recorded values for the glass‐transition temperature (Tg) and melting temperature with all the aforementioned techniques, it could be said that they were in good agreement. According to the thermogravimetric results, PPT and PPI showed about the same thermal stability, whereas PPN seemed to be somewhere more thermostable. Remarkably, a transition existed immediately after Tg that was realized by the first derivative of TMA, and it was characterized as a midrange transition. For all polyesters, the average coefficient of linear thermal expansion was calculated with TMA. The secondary relaxations Tβ and Tγ, recorded with dynamic mechanical thermal analysis, were mainly affected by the kinds of monomers. Concerning the mechanical properties, PPN had the highest tensile strength at break, whereas PPT had the highest elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3998–4011, 2005  相似文献   

18.
A new bis‐xanthone (xanthone=9H‐xanthen‐9‐one), named bigarcinenone A ( 1 ) which is the first example of a bis‐xanthone with the xanthone–xanthone linkage between an aromatic C‐atom and a C5 side chain from a guttiferae plant, a new phloroglucinol (=benzene‐1,3,5‐triol) derivative, named garcinenone F ( 2 ), together with seven known xanthones were isolated from the bark of Garcinia xanthochymus. Their structures were elucidated by spectroscopic methods, especially 2D‐NMR techniques. Bigarcinenone A ( 1 ) exhibited potent antioxidant activity in the 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical‐scavenging test with a IC50 value of 9.2 μM , compared to the positive control, the well‐known antioxidant butylated hydroxytoluene (BHT) with a IC50 of 20 μM (Table 3).  相似文献   

19.
In this work, a benzenedinitrile functionalized monomer, 2‐methyl‐acrylic acid 6‐(3,4‐dicyano‐phenoxy)‐hexyl ester, was successfully polymerized via the reversible addition‐fragmentation chain transfer method. The polymerization behavior conveyed the characteristics of “living”/controlled radical polymerization: the first‐order kinetics, linear increase of number‐average molecular weight with monomer conversion, narrow molecular weight distribution, and successful chain‐extension experiment. The soluble Zn(II) phthalocyanine (Pc)‐containing (ZnPc) polymers were achieved by post‐polymerization modification of the obtained polymers. The Zn(II) phthalocyanine‐functionalized polymer was characterized by FTIR, UV–vis, fluorescence, atomic absorption spectroscopy, and thermogravimetric analysis. The potential application of above ZnPc‐functionalized polymer as electron donor material in bulk heterojunction organic solar cell was studied. The device with ITO/PEDOT:PSS/ZnPc‐Polymer/PC61BM/LiF/Al structure provided a power conversion efficiency of 0.014%, fill factor of 0.24, open circuit voltage (Voc) of 0.21 V, and short‐circuit current (Jsc) of 0.28 mA/cm2. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 691–698  相似文献   

20.
A new polymeric ligand was synthesized by the reaction of bisphenol-A and formaldehyde in the basic medium, followed by condensation polymerization with barbituric acid in the acidic medium. Polymer metal complexes were prepared by reaction of this resin with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). The polymeric resin and its metal polychelates were characterized by elemental analysis, FT-IR, 13C-NMR, and 1H-NMR spectra. The geometry of the polymer metal complexes was evaluated by electronic spectra (UV-Vis) and magnetic moment measurement. Thermal stabilities show an increased thermal stability of the metal polychelates compared to the ligand. The antibacterial activities of all the synthesized polymers were investigated against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli, showing good antibacterial activities against these bacteria. Cu(II) polychelate showed highest biocidal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号