首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 864 毫秒
1.
This paper presents our results on the successful fabrication of HCl‐doped polyaniline (PANI)/ZnO nanocomposites via an electrochemical synthesis route. Different weight percents of ZnO nanoparticles were uniformly dispersed in the PANI matrix. The interaction between the dispersed ZnO nanoparticle and PANI was studied using X‐ray diffraction, ultraviolet–visible absorption spectroscopy, photoluminescence (PL) spectroscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, thermogravimetry, and transmission electron microscopy. It is shown that the doping state of the PANI/ZnO nanocomposite is highly improved as compared to that of PANI. The dispersed PANI/ZnO nanocomposites exhibit enhanced PL behavior and thermal stability.  相似文献   

2.
CdS半导体纳米簇具有独特的光、电性能, 如何制备均匀分散的、能够稳定存在的CdS纳米簇是目前的研究热点之一. 以聚酰胺-胺(PAMAM)树形分子为模板, 原位合成了CdS纳米簇. 首先用UV-Vis分光光度法研究了与树形分子的配位机理, 得出G4.5和G5.0的平均饱和配位数分别为16和34, 并发现在G4.5PAMAM树形分子中Cd2+主要与最外层叔胺基配位, 在G5.0PAMAM树形分子中Cd2+主要与最外层伯胺基配位. 酯端基的G4.5的模板作用要明显优于胺端基的G5.0. 通过改变Cd2+与G4.5树形分子的摩尔比可以得到不同粒径的CdS纳米簇. 溶液的pH值对CdS纳米簇影响很大, pH在7.0左右制备的CdS纳米簇粒径小而均匀, 且溶液稳定性高. 用UV-Vis分光光度计和TEM对CdS纳米簇的大小和形貌进行了表征. 结果表明TEM观测CdS纳米簇的粒径要大于用Brus公式的估算值.  相似文献   

3.
Fluorescent dyes are commonly conjugated to nanomaterials for imaging applications using stochastic synthesis conditions that result in a Poisson distribution of dye/particle ratios and therefore a broad range of photophysical and biodistribution properties. We report the isolation and characterization of generation 5 poly(amidoamine) (G5 PAMAM) dendrimer samples containing 1, 2, 3, and 4 fluorescein (FC) or 6‐carboxytetramethylrhodamine succinimidyl ester (TAMRA) dyes per polymer particle. For the fluorescein case, this was achieved by stochastically functionalizing dendrimer with a cyclooctyne “click” ligand, separation into sample containing precisely defined “click” ligand/particle ratios using reverse‐phase high performance liquid chromatography (RP‐HPLC), followed by reaction with excess azide‐functionalized fluorescein dye. For the TAMRA samples, stochastically functionalized dendrimer was directly separated into precise dye/particle ratios using RP‐HPLC. These materials were characterized using 1H and 19F NMR spectroscopy, RP‐HPLC, UV/Vis and fluorescence spectroscopy, lifetime measurements, and MALDI.  相似文献   

4.
Novel radiation shielding nanocomposites based on a conducting polymer were fabricated and investigated to determine their abilities in attenuation of X‐rays. Polypyrrole/Pb nanocomposites were prepared through chemical reduction of lead salt by a facile solution‐phase method using t‐BuOLi‐activated LiH and in situ chemical polymerization of pyrrole in the presence of dodecyl benzene sulfonic acid as dopant and surfactant and iron chloride as the oxidant. The morphology, composition, and electrical conductivity of resulting products were characterized by scanning electron microscopy, transmission electron microscopy, X‐ray diffraction analysis, energy‐dispersive X‐ray spectroscopy, fourier transform infrared spectroscopy, and standard four‐wire technique, respectively. In order to evaluate capability of nanocomposites in radiation shielding, X‐ray photon interaction parameters such as linear attenuation coefficient, attenuation percentage, and half‐value thickness were determined for the samples with different Pb loadings and thicknesses, at photon energies of 13.95, 17.74, 20.08, 26.34, and 59.50 keV. The investigation was carried out to explore the potential of polypyrrole/Pb nanocomposites as thin and light‐weight radiation shielding materials. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Morphological change of gold-dendrimer nanocomposites by laser irradiation   总被引:1,自引:0,他引:1  
Gold-dendrimer nanocomposites are prepared in aqueous solutions in the presence of poly(amidoamine)dendrimers (PAMAM) (generation 3 and 5) or poly(propyleneimine)dendrimers (PPI) (generation 3 and 4) by wet chemical NaBH(4) method. Thus prepared gold-dendrimer nanocomposites are irradiated by laser at 532 nm. UV-vis absorption spectroscopy and transmission electron microscopy reveal that the gold nanoparticles grow with the laser irradiation time as well as the fluence of the laser; in particular, the gold nanoparticles prepared at lower concentrations of PAMAM dendrimer as well as lower generations of PAMAM grow significantly. On the other hand, in the case of PPI dendrimers, the gold nanoparticles hardly grow by irradiation. In addition, dynamic light-scattering measurements show that the laser irradiation markedly promotes the association of the gold-PAMAM G3 dendrimer nanocomposites compared to that of the gold-PAMAM G5 dendrimer nanocomposites, while the sizes of association for the gold-PPI G3, G4 dendrimer nanocomposites hardly change by laser irradiation.  相似文献   

6.
The gamma irradiation method has provided a route for synthesis of highly water-soluble, good-quality luminescent CdS/dendrimer nanocomposites with amino- or carboxyl-terminated PAMAM dendrimer. An attempt has been made to probe ascorbic acid with the as-synthesized CdS/dendrimer nanocomposites (DNC). Ascorbic acid (AA) is an important biological antioxidant and marker for different diseases in clinical chemistry as well as in quality control in the food industry. Micromolar concentrations of AA significantly quenched the photoluminescence (PL) of both amino (–NH2) and carboxylic (–COOH) functionalized semiconductor nanocomposites. The quenching followed a linear Stern–Volmer equation and time-resolved photoluminescence spectroscopy confirmed its static nature. A strong size dependence of the quenching pattern was observed. The binding constants, and the corresponding thermodynamic parameters ΔG θ, ΔH θ, ΔS θ at different temperatures were calculated. CdS DNC showed selectivity towards ascorbic acid even in the presence of possible interfering molecules, such as uric acid, tartaric acid and citric acid. Nanocomposites-based assay techniques could override the complications involved in multitudes of assay procedures, providing a simple and fast new strategy for the quantification of Ascorbic acid in the range of 16.6 to 100 μM (R = 0.998, n = 9). The proposed method was applied to the detection of ascorbic acid in Vitamin C tablets with satisfactory results.  相似文献   

7.
An Fe3O4/C nanocomposite was synthesized in a microwave‐assisted hydrothermal reaction. This green wet‐chemical approach is simple, low‐cost, and ideal for large‐scale production. The resulting composite material was characterized by transmission electron microscopy, powder X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, Brunauer–Emmett–Teller analysis, X‐ray photoelectron spectroscopy, vibrating sample magnetometry, and UV/Vis spectroscopy. The product possesses porous structures and exhibits superparamagnetic behavior. Interestingly, its functional groups were inherited from the starting materials. This hydrophilic and biocompatible nanocomposite may find applications in catalysis, separation, adsorption, and bionanotechnology.  相似文献   

8.
本文以聚酰胺-胺(PAMAM)树形分子为模板,原位制备AgI纳米簇.系统地研究了AgI纳米簇制备过程中各种反应条件如树形分子端基、反应时间、Ag+与PAMAM摩尔比等对AgI纳米簇粒径的影响,分别用紫外-可见光谱、荧光光谱、透射电镜等对所制备的纳米簇进行表征.在相同的条件下,以G4.5-COOH3为模板较以G5.0-NH2为模板制备的AgI纳米簇粒径小、分布均匀,这主要取决于G4.5-COOCH3PAMAM树形分子所起的“内模板”作用.G4.5-COOH3树形分子浓度为1×10-5mol/L,Ag+与树形分子摩尔比为30:1时所制备的AgI纳米簇的粒径分布均匀、稳定性好,室温避光可稳定存在两个月以上.  相似文献   

9.
采用聚苯乙烯(PS)包裹Fe3O4磁性纳米粒子,制得Fe3O4@PS复合微球,以此作为磁性载体,通过微球表面的羧基将聚酰胺-胺类树形大分子(PAMAM)连接到磁性载体上,然后使Ag纳米粒子镶嵌在树形分子层中,制得可再生的金属复合催化粒子Fe3O4@PS@PAMAM-Ag.并采用红外光谱、扫描电镜、电感耦合等离子体质谱(ICP-MS)和X射线光电子能谱等方法对复合催化粒子进行了表征,结果表明,树形分子可以较好地分散和稳定金属Ag纳米粒子,所制复合催化粒子表面Ag含量为1.64%,具有较高的催化还原对硝基苯酚的活性.同时,利用外加磁场可以方便快捷地从反应体系中分离出来,继续用于下一次反应中,复合催化粒子循环使用6次后,仍保持完全的催化性能.  相似文献   

10.
Summary: A low‐density polyethylene (LDPE)/millable polyurethane (PU)/organoclay ternary nanocomposite was successfully prepared. The nanocomposites were characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The nanocomposites, as evidenced by XRD, are intercalated. The heat shrinkable behavior of the nanocomposites, as well as their pristine counterparts, was studied. It was observed that heat shrinkability decreases with increased filler content. The tensile strength and the tensile modulus of the nanocomposites are higher than their pristine counterparts.

The heat shrinkability of the unfilled LDPE/millable PU blend is highest and it decreases with increased nanofiller content.  相似文献   


11.
采用水热法合成了一种微球状的CuS/Ag2S纳米复合物. 通过透射电子显微镜、 紫外-可见吸收光谱和拉曼光谱等对其形貌及光学性质进行了表征; 考察了其类过氧化物酶性质, 并通过表面增强拉曼散射原位监测了类过氧化物酶催化反应. 以3,3',5,5'-四甲基联苯胺(TMB)为底物进行显色反应, 结果表明, 在H2O2存在下CuS/Ag2S 纳米复合物具有类过氧化物酶的性质, 可以将无色的TMB氧化成蓝色的oxTMB. 基于此实现了对微量H2O2的检测.  相似文献   

12.
Summary: Poly(propylene)/monoalkylimidazolium‐modified montmorillonite (PP/IMMT) nanocomposites were prepared by in situ intercalative polymerization of propylene with TiCl4/MgCl2/MMT catalyst. The PP synthesized possessed high isotacticity and molecular weight. Both wide‐angle X‐ray diffraction (XRD) and transmission electron microscopy (TEM) examinations evidenced the nanocomposite formation with exfoliated MMT homogeneously distributed in the PP matrix. A thermal stability study revealed that the nanocomposites possess good thermal stability.

X‐ray diffraction patterns of PP/IMMT (MMT = 2.2 wt.‐%) nanocomposite before and after processing.  相似文献   


13.
In this work, we have employed a suite of complementary analytical techniques to shed light on the nanocomposite structures formed during gold nanoparticles (AuNPs) synthesis in the presence of poly(amidoamine) (PAMAM) dendrimers. Nanocomposites of AuNPs and either fourth or eighth generation amine-terminated PAMAM dendrimers (G4 or G8) were prepared. The size distributions of AuNPs and the nanocomposites were determined by transmission electron microscopy. Atomic force microscopy phase imaging and neutral impact collision ion scattering spectroscopy (NICISS) were utilized for the first time to investigate and compare nanocomposite structures formed from G4 and G8. Our results suggest that G4 stabilized the AuNP by capping the AuNP particle surface but that a certain fraction of the gold surface was still barely covered. In contrast, the metal nanoparticle surface was completely covered by G8. In addition, NICISS results provided evidence that nanocomposites deformed when being deposited directly onto a substrate.  相似文献   

14.
The influence of nanoclay on the morphology and properties of the polypropylene (PP)/ethylene–octene block copolymer (EOC) blend with double compatibilizers of maleated PP (PP‐g‐MA) and maleated EOC (EOC‐g‐MA) was investigated and compared with the nanocomposites containing either PP‐g‐MA or EOC‐g‐MA as a compatibilizer. X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy were utilized for morphological characterization in conjunction with dynamic mechanical thermal analysis, mechanical testing, and rheological evaluation of these nanocomposites. The results suggested that in the nanocomposite including both compatibilizers of PP‐g‐MA and EOC‐g‐MA, clay was dispersed as a mixed structure of intercalation and exfoliation in both phases of the polymer blend. Comparing the mechanical properties of the studied nanocomposite with nanocomposites of PP/EOC/PP‐g‐MA/clay and PP/EOC/EOC‐g‐MA/clay also indicated that the nanocomposite containing mixed compatibilizers displayed higher tensile modulus, tensile strength, and complex viscosity because of the better dispersion of clay in both phases. The results also confirmed the increased structural stability and reduced dispersed phase size of PP/EOC/PP‐g‐MA/EOC‐g‐MA blend in the presence of clay that proposed the compatibilization role of clay in this nanocomposite. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Interactions between poly(amidoamine) dendrimer (PAMAM)-gold nanocomposites and alkanethiols and between the former nanocomposites and thiol-modified poly(amidoamine) dendrons in ethyl acetate were investigated by adding alkanethiols, such as 1-propanethiol and 1,3-propanedithiol, and thiol-modified poly(amidoamine) dendrons, generations 0.5 and 2.5 (G0.5-SH and G2.5-SH). The PAMAM dendrimers with surface methyl ester groups used were generations 1.5 and 5.5 (G1.5 and G5.5). The mean particle sizes of PAMAM-gold nanocomposites were about 2.1 for G1.5 and 2.4 nm for G5.5. In both nanocomposite systems where 1-propanethiol and 1,3-propanedithiol were added, the mean particle size was about 4 nm, twice that of the systems where these thiols were not added. Increasing the addition of 1,3-propanedithiol made the average particle size smaller for both nanocomposites systems. To compare with alkanethiol, thiol-modified poly(amidoamine) dendron with a highly branched structure on one side was synthesized. Using G2.5-SH as a protective agent, dendron-gold nanocomposites with mean diameters of 3 to 4 nm were obtained. The difference in particle size was seen only when the combination of PAMAM-gold nanocomposites and thiol-modified dendron was less sterically dense, modified dendron (G0.5-SH). The mechanisms for morphology changes in the dendrimer-gold nanocomposites by the addition of these thiols are discussed.  相似文献   

16.
In this article, a detailed electrochemical study of a novel 6‐ferrocenylhexanethiol (HS(CH2)6Fc) self‐assembled multiwalled carbon nanotubes‐Au nanoparticles (MWNTs/Au NPs) composite film was demonstrated. MWNTs/Au NPs were prepared by one‐step in situ synthesis using linear polyethyleneimine (PEI) as bifunctionalizing agent. HS(CH2)6Fc, which acted as the redox mediator, was self‐assembled to MWNTs/Au NPs via Au‐S bond. Transmission electron microscopy (TEM), energy‐dispersive X‐ray analysis (EDX), Fourier transformed infrared absorption spectroscopy (FT‐IR), UV‐visible absorption spectroscopy, and cyclic voltammetry were used to characterize the properties of the MWNTs/Au NPs/HS(CH2)6Fc nanocomposite. The preparation of the nanocomposite was very simple and effectively prevented the leakage of the HS(CH2)6Fc mediator during measurements. The electrooxidation of AA could be catalyzed by Fc/Fc+ couple as a mediator and had a higher electrochemical response due to the unique performance of MWNTs/Au NPs. The nanocomposite modified electrode exhibited excellent catalytic efficiency, high sensitivity, good stability, fast response (within 3 s) and low detection limit toward the oxidation of AA at a lower potential.  相似文献   

17.
Highly ordered mesoporous molecular sieves AlMCM‐41 and a new NiO/AlMCM‐41 nanocomposite were synthesized using a sol–gel method. Fourier transform infrared (FT‐IR) spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX), and N2 adsorption desorption analyses were used to examine the structure, morphology, size and phase composition of the synthesized NiO/AlMCM‐41 nanocomposites. AlMCM‐41 embedded with NiO nanoparticles was subsequently prepared using different nickel loadings in a direct synthetic route. The results show the successful deposition of NiO nanoparticles onto the framework of AlMCM‐41. AlMCM‐41 provides enormous benefits such as environmentally safe, economic viability and porosity when used as support for NiO nanoparticles. The excellent catalytic activities of AlMCM‐41 and NiO/AlMCM‐41 were investigated for the reduction of nitrophenols (4‐NP, 2‐NP) to aminophenols (4‐AP, 2‐AP) in water at ambient temperature. The best observed performance of reduction of NP with 100% conversion into analogous amino derivatives occurred within 6 min with an estimated rate constant of 0.46 min?1. The efficiency of reduction was observed to increase as a function of NiO enrichment. The NiO/AlMCM‐41 nanocomposite could be recycled and reused up to five times without noticeable change in its structure and activity. These properties make NiO/AlMCM‐41 nanocomposite an ideal platform to study various heterogeneous catalytic processes which can have application in purification, catalysis, sensing devices, and green chemistry.  相似文献   

18.
Protein-resistant films derived from the fifth-generation poly(amidoamine) dendrimers (PAMAM G5) functionalized with oligo(ethylene glycol) (OEG) derivatives consisting of various ethylene glycol units (EG(n), n = 3, 4, and 6) were prepared on the self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid (MUA) on gold substrates. The resulting films were characterized by ellipsometry, contact angle goniometry, and X-ray photoelectron spectroscopy (XPS). About 35% of the peripheral amines of the dendrimers were reacted with N-hydroxysuccinimide-terminated EG(n) derivatives (NHS-EG(n)). The dendrimer films showed improved stability over octadecanethiolate SAMs on gold in hot solvents, attributed to the formation of multiple amide bonds per PAMAM unit with underlying NHS-activated MUA monolayer. The EG(n)-attached PAMAM surfaces with n = 3 reduced the adsorption of fibrinogen to approximately 20% monolayer, whereas 2-3% for n = 4 or 6. The dendrimer films with various densities of EG(n) molecules on PAMAM surfaces were prepared by immersion of the NHS-terminated MUA-functionalized gold substrates in ethanolic solutions containing PAMAM and NHS-EG(n) of various mole ratios. The density (r) of the EG(n) molecules on the PAMAM surfaces is consistent with the mole ratio (r') of NHS-EG(n)/free amine of PAMAM in solutions. The resistance to protein adsorption of the resulting surfaces is correlated with the surface density and the length of the EG chains. At their respective r, the EG(n)-modified dendrimer films resisted approximately 95% adsorption of fibrinogen on gold surfaces. Finally, the specific binding of avidin to the approximately 5% and approximately 40% biotinylated EG3 dendrimers (surface density of biotin with respect to the total number of terminal amino groups on PAMAM G5) gave rise to about 50% and 100% surface coverage by avidin, respectively.  相似文献   

19.
In this research work, novel magnetic superabsorbent hydrogel nanocomposites (MSHNs) based on carboxymethyl cellulose were prepared via a facile “one‐pot” two step approach. Magnetic iron oxide nanoparticles were in situ synthesized and incorporated into carboxymethyl cellulose/poly(acrylic acid) polymer hydrogel. The morphology and chemical composition of MSHNs as well as the presence of magnetic iron oxide nanoparticles were evaluated by using Fourier transform infrared, scanning electron microscopy, transmission electron microscopy, X‐Ray diffraction, ultraviolet–visible spectroscopy, thermogravimetric analysis, and vibrating sample magnetometer. The effect of different reaction parameters on the swelling capacity of MSHNs was investigated. Furthermore, batch adsorption experiments of crystal violet dye onto MSHNs were studied by varying solution pH, initial dye concentration, and temperature. Evaluation of thermodynamic parameters of crystal violet adsorption confirmed that the adsorption was spontaneous and endothermic process in nature. The equilibrium study revealed that the dye adsorption behavior of MHSNs followed the Redlich‐Peterson isotherm model. Finally, the dye adsorption experiment data was well fitted by the pseudo‐second‐order kinetic model with the regression coefficient (R2) of 0.9979. Our results suggest that the MHSNs with facile preparation method, high swelling capacity, and high dye adsorption capacity may be used as promising adsorbents for fast removal of various dyes from aqueous solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Sulfur doped ZnO/TiO2 nanocomposite photocatalysts were synthesized by a facile sol‐gel method. The structure and properties of catalysts were characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), UV‐vis diffusive reflectance spectroscopy (DRS) and N2 desorption‐adsorption isotherm. The XRD study showed that TiO2 was anatase phase and there was no obvious difference in crystal composition of various S‐ZnO/TiO2. The XPS study showed that the Zn element exists as ZnO and S atoms form SO2?4. The prepared samples had mesoporosity revealed by N2 desorption‐adsorption isotherm result. The degradation of Rhodamine B dye under visible light irradiation was chosen as probe reaction to evaluate the photocatalytic activity of the ZnO/TiO2 nanocomposite. The commercial TiO2 photocatalyst (Degussa P25) was taken as standard photocatalyst to contrast the prepared different photocatalyst in current work. The improvement of the photocatalytic activity of S‐ZnO/TiO2 composite photocatalyst can be attributed to the suitable energetic positions between ZnO and TiO2, the acidity site caused by sulfur doping and the enlargement of the specific area. S‐3.0ZnO/TiO2 exhibited the highest photocatalytic activity under visible light irradiation after Zn amount was optimized, which was 2.6 times higher than P25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号