首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluoroalkyl end‐capped acrylic acid oligomer [RF‐(ACA)n‐RF] reacted with tetraethoxysilane and silica nanoparticles in the presence of low molecular weight aromatic compounds [ Ar‐H ] such as cetylpyridinium chloride (CPC) and bisphenol AF under alkaline conditions to afford RF‐(ACA)n‐RF/SiO2 nanocomposites‐encapsulated Ar‐H in 47–94% isolated yields. These fluorinated silica nanocomposites‐encapsulated Ar‐H can exhibit no weight loss behavior corresponding to the contents of Ar‐H after calcination at 800 °C under atmospheric conditions, although fluoroalkyl end‐capped acrylic acid oligomer in the nanocomposites decomposed completely under similar conditions. UV‐vis spectra of well‐dispersed methanol solutions of RF‐(ACA)n‐RF/SiO2/CPC nanocomposites before calcination show that CPC can be encapsulated into fluorinated silica nanocomposites with encapsulated ratios: 23–43%. The fluorinated nanocomposites after calcination was found to exhibit a higher antibacterial activity related to the presence of CPC in the composites. Encapsulated bisphenol AF into RF‐(ACA)n‐RF/SiO2 nanocomposites before and after calcination at 800 °C can exhibit a good releasing ability toward methanol with released ratios: 48 and 26%, respectively. 1H MAS NMR, HPLC analysis, and LC‐MS spectra of RF‐(ACA)n‐RF/silica nanocomposites‐encapsulated bisphenol AF also showed the presence of bisphenol AF in the nanocomposites even after calcination at 800 °C under atmospheric conditions. These findings suggest that CPC and bisphenol AF can exhibit a nonflammable characteristic in the fluorinated silica nanocomposites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Fluoroalkyl end‐capped vinyltrimethoxysilane oligomer [RF‐(VM)nRF] reacted with boric acid to afford the corresponding fluorinated oligomeric silica/boric acid nanocomposite [RF‐(VM? SiO2)nRF/B(OH)3] fine particles with mean diameter: 36–105 nm. The obtained RF‐(VM? SiO2)nRF/B(OH)3 nanocomposites were applied to the encapsulation of low molecular weight organic compounds such as diphenylsilanediol, 1,1′‐bi‐2‐naphthol, 4,4′‐biphenol, bisphenol A, bisphenol F, bisphenol AF, biphenyl, dibenzyl, and pentaerythritol into these nanocomposite cores to provide the corresponding fluorinated oligomeric silica/boric acid nanocomposites—encapsulated these organic molecules. Interestingly, the obtained nanocomposites were found to exhibit no weight loss behavior corresponding to the contents of these guest molecules even after calcination at 800 °C, although these nanocomposites were isolated through no purification process. The RF‐(VM? SiO2)nRF nanocomposites—encapsulated these organic guest molecules were prepared under similar conditions. However, it was demonstrated that these nanocomposites can provide the clear weight loss corresponding to the contents of these guest molecules in the nanocomposites after calcination at 800 °C. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3835–3845  相似文献   

3.
Sol–gel reactions of fluoroalkyl end‐capped trimethoxyvinylsilane oligomer in the presence of low molecular weight aromatic compounds (ArH) such as 1,1′‐bi(2‐naphthol) (BINOL) and 2‐hydroxy‐4‐methoxy benzophenone (HMB) were found to proceed smoothly under alkaline conditions at room temperature to give the corresponding fluorinated oligomeric silica nanocomposites‐encapsulated aromatic compounds (BINOL and HMB) [RF‐(VM‐SiO2)n‐RF/ArH nanocomposites]. UV light irradiation (λmax: 254 nm) toward RF‐(VM‐SiO2)n‐RF/ArH nanocomposites showed that photodegradation of encapsulated ArH was not observed at all in the fluorinated nanocomposites cores, although the parent ArH can exhibit an effective photodegradation behavior under similar conditions. Especially, encapsulated ArH can exhibit no weight loss corresponding to the contents of the aromatic compounds in the fluorinated nanocomposites even after calcination at 800°C. Therefore, fluoroalkyl end‐capped trimethoxyvinylsilane oligomer has high potential for not only the thermal resistance but also the UV resistance fluorinated polymeric materials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Perfluoro oxymethylene vinyl ethers have been formed by a multi-step synthesis. The key intermediates are low molecular weight perfluoropolyether (PFPE) fluoroformates CF3O(CF2O)nCOF (I) n=1-6 obtained from the photo-oxidation of perfluoro propene (HFP) in perfluorohexane. Under certain conditions the light-mediated fluorination of PFPE fluoroformates (I) gives PFPE hypofluorites CF3O(CF2O)nCF2OF (II), which can be added to sym dichlorodifluoroethene to form the dichloro adduct CF3O(CF2O)nCF2OCFClCF2Cl (III) which, after dechlorination, gives the desired vinyl ethers CF3O(CF2O)nCF2OCFCF2 (IV). Every reaction step has to be properly controlled as far as the reaction variables are concerned. A mechanistic scheme is presented that is consistent with the observed experimental data.  相似文献   

5.
Carboxylic acids prepared from hexafluoropropene oxide CF3CF2CF2O[CF(CF3)CF2O]nCF (CF3)COOH [n = 0, 2,5-bis(trifluoromethyl)-3,6-dioxaperfluorononanoic acid; n = 1, 2,5,8- tris(trifluoromethyl)-3,6,9-trioxaperfluorododecanoic acid], according to voltammetric data, enter the Kolbe reaction both at the Pt anode and at anodes from carbon materials in H2O-CH3CN and CH3OH-CH3CN solutions. The critical potential appreciably depends both on the anode material and on the solvent composition. Favorable effect of pyridine additions in H2O-CH3CN solutions is due to replacement of water molecules from the electrical double layer. The sodium ions exert a negative effect on the Kolbe synthesis.Translated from Zhurnal Obshchei Khimii, Vol. 74, No. 11, 2004, pp. 1842–1846.Original Russian Text Copyright © 2004 by Chechina, Sokolov, Tomilov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

6.
In order to synthesize poly-(fluorinated alkanesulfonamides) a series of model experiments were carried out: (1) reactions of fluorinated alkanesulfonyl fluorides with amines, (2) reactions of fluorinated alkanesulfonyl chloride with amines and (3) reactions of sodium salts of fluorinated alkanesulfonamides with alkyl iodides of fluorinated alkanesulfonic acid esters. Seventeen new fluorinated alkanesulfonamides were prepared in good yields, namely: RFO(CF2)2SO2NR1R2 (1a-h), R1R2NSO2RFSO2NR1R2 (2a-h) and [Cl (CF2)4O(CF2)2SO2NH(CH2)3]2 (3). Reaction of RFSO2NH2 with equivalent amount of NaOCH3 and methyl iodide was shown to give both the N-mono- and N,N-di-substituted amides. Consequently the N-monosubstituted alkanesulfonamides were chosen as monomers for syntheses of the poly-(fluorinated alkanesulfonamides) and two new polymers were synthesized. The effect of the condition of the polycondensation on M?n of the polymers were discussed and elemental composition, 19F NMR, IR, M?n, Tg, tensile strength, thermal and chemical stabilities of the polymers were measured. Several new perfluoroalkanesulfonyl chlorides CISO2RFSO2Cl (4a-c) and fluorinated alkanesulfonic acid esters (6a-d) were synthesized. However, reaction of CFCl2CF2O(CF2)2SO2F with AlCl3 was found to give Cl3CCF2O(CF2)2SO2F (5) instead of the expected sulfonyl chloride.  相似文献   

7.
Calcium chloride reacted with sodium carbonate in the presence of a variety of fluoroalkyl end‐capped oligomers such as fluoroalkyl end‐capped acrylic acid oligomer (RF‐[ACA]n‐RF), 2‐methacryloyloxyethanesulfonic acid oligomer (RF‐[MES]n‐RF), N,N‐dimethylacrylamide oligomer (RF‐[DMAA]n‐RF) and acryloylmorpholine oligomer (RF‐[ACMO]n‐RF) to afford the corresponding fluorinated oligomers/calcium carbonate composites. Each fluorinated oligomer/calcium carbonate composite thus obtained is nanometer size‐controlled very fine particles (25–114 nm) possessing a good dispersibility and stability in a variety of solvents including water. Thermal stability of these fluorinated calcium carbonate nanocomposites was studied by thermogravimetic analyses measurements. Fluorinated oligomes, in which the theoretical oligomer content in the composites is 19%, were able to give no weight loss corresponding to the content of oligomer in each case even after calcination at 800 °C. On the other hand, a slight weight loss corresponding to the contents of oligomers in the composites after calcination at 800 °C was observed in RF‐(MES)n‐RF/, RF‐(DMAA)n‐RF/ and RF‐(ACMO)n‐RF/calcium carbonate nanocomposites, in which the theoretical contents of the oligomers were 36–53%, although RF‐(ACA)n‐RF/calcium carbonate nanocomposites gave a clear weight loss corresponding to the contents of oligomer under similar conditions. Fluorinated oligomers/calcium carbonate nanocomposites possessing no weight loss at 800 °C were applied to the surface modification of poly(methyl methacrylate) (PMMA) to exhibit a good oleophobicity imparted by fluorines on the surfaces. Interestingly, these fluorinated calcium carbonate nanocomposites after calcination at 800 °C were found to exhibit the similar oleophobic characteristic on the modified PMMA surfaces as well as that of the nanocomposites before calcination. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A silver‐mediated oxidative trifluoromethylation of easily accessible α‐trifluoromethyl alcohols with TMSCF3 was developed to access novel CF3(OCF3)CH‐containing compounds. Deprotonation of CF3(OCF3)CH‐substituted arenes afforded synthetically useful CF3O‐substituted gem‐difluoroalkenes. Furthermore, evaluation of the lipophilicities (log P) indicated that CH(OCF3)CF3 is more lipophilic than the common fluorinated motifs such as CF3, OCF3, and SCF3, thus rendering the CH(OCF3)CF3 motif appealing in drug discovery.  相似文献   

9.
A fluorinated diamine monomer containing flexible ether linkage and bulky trifluoromethyl substituents, namely, bis(4‐amino‐2‐trifluoromethylphenyl) ether (a), is employed to react with nonfluorinated 1,4‐bis(3,4‐dicarboxyphenoxy) benzene dianhydride (3) and CF3‐free 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl] propane dianhydride (4), respectively, to prepare 2 novel soluble and optically transparent semi‐fluorinated poly (ether imide)s (PEIs; 3a and 4a). Compared with the corresponding PEIs based on nonfluorinated 4,4′‐diaminodiphenyl ether (b) and CF3‐free pyromellitic dianhydride (5), the novel semifluorinated PEIs 3a and 4a not only display better solubility in some organic solvents and higher optical transparency with cutoff absorption wavelength (λ0) below 370 nm but also maintain outstanding mechanical properties and thermal stability. 3a and 4a have tensile strength beyond 80 MPa and possess glass‐transition temperatures (Tg) beyond 210°C, coupled with the temperatures of 5% weight loss (T5%) exceeding 500°C. It is also found that 3a and 4a exhibit contact angles against water beyond 110° and water absorptions below 0.8% together with dielectric constants less than 3.2.  相似文献   

10.
Halogenated sp2 materials are of high interest owing to their important electronic and electrochemical properties. Although methods for graphite and graphene fluorination have been extensively researched, the fundamental electrochemical properties of fluorinated graphite are not well established. In this paper, the electrochemistry of three fluorographite materials of different carbon‐to‐fluorine ratio were studied: (CF0.33)n, (CF0.47)n, and (CF0.75)n. Our findings reveal that the carbon‐to‐fluorine ratio of fluorographite will impact the electrochemical performance. Faster heterogeneous electron‐transfer (HET) rates and lowered oxidation potentials for ascorbic acid and uric acid are progressively obtained with increasing fluorine content. The fluorographite (CF0.75)n was in fact found to exhibit the most improved electrochemical performances with the fastest HET rates and significantly lowered overpotentials in the oxidation of ascorbic acid. Analytical parameters such as sensitivity and linearity were subsequently investigated by applying the fluorographite (CF0.75)n in the analysis of ascorbic acid and uric acid, which can be simultaneously detected. We determined good linear responses towards the detection of both ascorbic and uric acid. Fluorographites outperform graphites in sensing applications, which will have a profound impact on applications of fluorographites and fluorographene in sensing and biosensing.  相似文献   

11.
This minireview updates non-exhaustive recent strategies of synthesis of original fluorosurfactants potentially non-bioaccumulable. Various strategies have been focused on (i) the preparation of CF3–X–(CH2)n–SO3Na (with X = O, C6H4O or N(CF3) and n = 8–12), (ii) the oligomerization of hexafluoropropylene oxide (HFPO) to further synthesize oligo(HFPO)–CF(CF3)CO–RH (where RH stands for an hydrophilic chain); (iii) the telomerization of vinylidene fluoride (VDF) with 1-iodopentafluoroethane or 1-iodononafluorobutane to produce CnF2n+1–(VDF)2–CH2CO2R (n = 2 or 4, R = H or NH4), (iv) the radical telomerization of 3,3,3-trifluoropropene (TFP) with isoperfluoropropyliodide or diethyl hydrogenophosphonate to prepare (CF3)2CF(TFP)x–RH or CF3–CH2–CH2–(TFP)y–P(O)(OH)2, and (v) the radical cotelomerization of VDF and TFP, or their controlled radical copolymerization in the presence of (CF3)2CFI or a fluorinated xanthate. In most cases, the surface tensions versus the surfactant concentrations have been assessed. These above strategies led to various highly fluorinated (but yet not perfluorinated) telomers whose chemical changes enabled to obtain original surfactants as novel alternatives to perfluorooctanoic acid (PFOA), ammonium perfluorooctanoate (APFO), or perfluorooctylsulfonic acid (PFOS) regarded as bioaccumulable, persistent, and toxic.  相似文献   

12.
The paper describes an investigation of the gas chromatographic properties of tetrafluoroethylene telomers of general formula F(CF2)nI, Br(CF2)nBr, Br(CF2)nI, I(CF2)nI and (CF3)2CF(CF2)nI. The telomers are well resolved on columns with squalene, silicone oil or tritolyl phosphate stationary phases, and relative retention volumes are given for these three columns. The temperature dependence of the relative retention volumes of F(CF2)nI and Br(CF2)nBr telomers has been investigated. The relative retention volumes are correlated with the telomer boiling points, and with structural features of the telomers.  相似文献   

13.
The complexes [RhCl(3−n)(MeCN)n(CF3triphos)](CF3SO3)n (n=1, 2; CF3triphos=MeC[CH2P(m‐CF3C6H4)2]3) and [M(MeCN)3 (CF3triphos)](CF3SO3)n (M=Ru, n=2; M=Ir, n=3) are catalyst precursors for some typical acetalization and transacetalization reactions. The activity of these complexes is higher than those of the corresponding species containing the parent ligand MeC[CH2P(C6H5)2]3(Htriphos). Also the complexes [MCl3(tripod)] (tripod=Htriphos and CF3triphos) are active catalysts for the above reactions. The complex [RhCl2(MeCN)(CF3triphos)](CF3SO3) catalyzes the acetalization of benzophenone.  相似文献   

14.
A series of perfluoropolyether bis‐carboxylic esters was synthesized and their hydrolytic stability investigated. Their formula is ROOCCF2O(CF2CF2O)p(CF2O)qCF2COOR, where p/q = 1.07 and p + q = 2.94. The alkyl group, R, varied both in terms of steric hindrance and electron‐withdrawing ability. Kinetic and thermodynamic data were obtained under homogeneous conditions and compared to a fully hydrogenated ester having a closely related structure CH3(CH2)3OOCCH2O(CH2CH2O)nCH2COO(CH2)3CH3, where n? = 10.6. Neutral ester hydrolysis (NEH) conditions were selected with methyl ethyl ketone as a solvent and a 3–4:1 water/ester ratio. The course of the reaction was monitored by 19F NMR or 1H NMR (when R = CH3CH2? ). Results indicated that the hydrolysis of fluorinated esters, with alkyl aliphatic substituents, is governed by steric hindrance of the substituents. Two distinctive kinetic regimes were observed. The first one, at low conversion, was characterized by lower kinetic constants and related to true NEH conditions. The second regime appeared at higher conversion when acidic autocatalysis dictated the reaction behavior. This is the only observed mechanism when esters more sensitive to the hydrolysis are considered. In these cases, polar factors prevail over steric considerations. Finally, all fluorinated esters of the class (I) showed a much higher reactivity than the hydrogenated ester whose hydrolysis took place only in the presence of a strong acidic catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4266–4280, 2002  相似文献   

15.
Exposure of the tetrameric, heterocubane‐like perfluorinated lithium alkoxide [Li{OC(CF3)3}]4 to humid air gaverise to the hydrolysis products [{(CF3)3CO}Li(H2O)2μ‐(H2O)‐Li(H2O)2{OC(CF3)3}], [{(CF3)3CO}Li(H2O)2μ‐(H2O)‐Li‐(H2O)3]+[OC(CF3)3] and [Li(H2O)4]+[OC(CF3)3] because of stepwise addition of water molecules in a gas‐solid reaction without solvent. All compounds were studied by X‐ray crystallography and their solid‐state structures are strongly influenced by hydrogen bonding and fluorophilic interactions.  相似文献   

16.
The ESR spectra of radical anions formed by reduction of α-diketones RC(O)C(O)CF3 (R=(CF3)2CF, C6F5, (CF3)3C) with metals (Li, Na, K, Mg, Cd, Zn, Hg, In, and TI) in THF were studied. For R=(CF3)2CF and C6F5, the radical anions are formed ascis-isomers, whereas for R=(CF3)3C,trans-isomers are obtained. Line broadening due to solvation and desolvation of the cation is observed in the latter case. The reduction of α-diketone (CF3)2CFC(O)C(O)CF3 with Group II metals (Mg, Cd, Zn) results in the formation of radical pairs. Translated fromIzvestiya Akadmii Nauk. Seriya Khimicheskaya, No. 11, pp. 2228–2231, November, 1998.  相似文献   

17.
The story of the outset and the growth of radical polyaddition of bisperfluoroisopropenyl derivatives [CF2?C(CF3)? R? C(CF3)? CF2] with several organic compounds possessing carbon–hydrogen bonds is described. The reaction afforded novel fluorinated polymers bearing such organic segments in polymer main chains as 1,4‐dioxane, diethyl ether, dimethoxyethane, 18‐crown‐6, triethylamine, glutaraldehyde, and alkanes which have never been supposed as direct starting compounds for preparation of polymers. The facile method for preparation of fluorinated hybrid polymers bearing alkylsilyl groups was developed with diethoxydimethylsilane and silsesquioxanes. Taking advantage of the high reactivity of the perfluoroisopropenyl group as a radical acceptor, self‐polyaddition and cyclopolymerization were investigated. Triethysilyl perfluoroisopropenyl ether [CF2? C(CF3)? O? Si(C2H5)3] was proved to be the most probable candidate for self‐polyaddition. Cyclopolymerization of perfluoroisopropenyl vinylacetate [CF2?C(CF3) OCO? CH2CH? CH2] was investigated to afford polymers possessing five‐membered‐ring units in main chains. The interconversion of the unstable fluorinated carbon radical and the stable hydrocarbon radical had an important role in the reaction. The radical addition reaction presented herein may be developed for preparation of a wide variety of novel fluorinated polymers and organic compounds possessing functional groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4101–4125, 2004  相似文献   

18.
A series of polymers, {Cr(OH)(OPRR′O)[OOC(CF2)nCF(CF3)2]}x has been prepared and studied. The polymers with R = R′ = C6H5 are soluble in CCl2FCClF2, whereas those with R = CH3 and R′ = C6H5 and with R = R′ = C8H17 are insoluble in all solvents. Attempts to prepare similar materials without hydroxyl groups gave the polymers {Cr(OH)r(OPRR′O)p[OOC(CF2)nCF(CF3)2]q}x with 0 < r < 1. The latter polymers are much more tractable than the former; however they are also less thermally stable. The perfluoro-carboxylate groups in these materials can either be chelating or bridging, depending on the other ligands present.  相似文献   

19.
Fluorination of chlorofluorinated telomers of general formula Cl(CFClCF2)nCCl3 (n ? 7) was studied using potassium fluoride in dimethylsulfoxide as fluorinating agent. The reaction leads to a mixture of perfluorinated linear olefins having 15 to 30 carbon atoms : CF3(CF2)pCFCF(CF2)mCF3 (p + m = 2n?3).We perfected a method to determine molecular weights of the telomers by gel permeation chromatography (G.P.C.). The olefins obtained by fluorination are analyzed both by vapor phase chromatography (V.P.C.) and by 19F nuclear magnetic resonance (N.M.R.).  相似文献   

20.
The reaction of CuI, AgI, and AuI salts with carbon monoxide in the presence of weakly coordinating anions led to known and structurally unknown non‐classical coinage metal carbonyl complexes [M(CO)n][A] (A=fluorinated alkoxy aluminates). The coinage metal carbonyl complexes [Cu(CO)n(CH2Cl2)m]+[A]? (n=1, 3; m=4?n), [Au2(CO)2Cl]+[A]?, [(OC)nM(A)] (M=Cu: n=2; Ag: n=1, 2) as well as [(OC)3Cu???ClAl(ORF)3] and [(OC)Au???ClAl(ORF)3] were analyzed with X‐ray diffraction and partially IR and Raman spectroscopy. In addition to these structures, crystallographic and spectroscopic evidence for the existence of the tetracarbonyl complex [Cu(CO)4]+[Al(ORF)4]? (RF=C(CF3)3) is presented; its formation was analyzed with the help of theoretical investigations and Born–Fajans–Haber cycles. We discuss the limits of structure determinations by routine X‐ray diffraction methods with respect to the C? O bond lengths and apply the experimental CO stretching frequencies for the prediction of bond lengths within the carbonyl ligand based on a correlation with calculated data. Moreover, we provide a simple explanation for the reported, partly confusing and scattered CO stretching frequencies of [CuI(CO)n] units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号