首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Camassa–Holm (CH) system is a strong nonlinear third‐order evolution equation. So far, the numerical methods for solving this problem are only a few. This article deals with the finite difference solution to the CH equation. A three‐level linearized finite difference scheme is derived. The scheme is proved to be conservative, uniquely solvable, and conditionally second‐order convergent in both time and space in the discrete L norm. Several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 451–471, 2014  相似文献   

2.
A competitive nonstandard semi‐explicit finite‐difference method is constructed and used to obtain numerical solutions of the diffusion‐free generalized Nagumo equation. Qualitative stability analysis and numerical simulations show that this scheme is more robust in comparison to some standard explicit methods such as forward Euler and the fourth‐order Runge‐Kutta method (RK4). The nonstandard scheme is extended to construct a semi‐explicit and an implicit scheme to solve the full Nagumo reaction‐diffusion equation. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 363–379, 2003.  相似文献   

3.
We study two novel decoupled energy‐law preserving and mass‐conservative numerical schemes for solving the Cahn‐Hilliard‐Darcy system which models two‐phase flow in porous medium or in a Hele–Shaw cell. In the first scheme, the velocity in the Cahn–Hilliard equation is treated explicitly so that the Darcy equation is completely decoupled from the Cahn–Hilliard equation. In the second scheme, an intermediate velocity is used in the Cahn–Hilliard equation which allows for the decoupling. We show that the first scheme preserves a discrete energy law with a time‐step constraint, while the second scheme satisfies an energy law without any constraint and is unconditionally stable. Ample numerical experiments are performed to gauge the efficiency and robustness of our scheme. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 936–954, 2016  相似文献   

4.
The mathematical modeling of a planar solid‐liquid interface in the solidification of a dilute binary alloy is formulating by one of nonintegrable, nonlinear evolution equation known as Sivashinsky equation. In the first part of this paper, the mathematical modeling of Sivashinsky equation is briefly discussed. Since, the exact solutions of this equation is yet unknown, obtaining its numerical solution plays an important role to simulate its behavior. Therefore, in the second part, a second‐order splitting finite difference scheme, based on Crank‐Nicolson method, is investigated to approximate the solution of the Sivashinsky equation with homogeneous boundary conditions. We prove the solvability of the present scheme and establish the error estimate of the numerical scheme.  相似文献   

5.
We present a numerical scheme for Landau–Lifshitz–Gilbert equation coupled with the equation of elastodynamics. The considered physical model describes the behaviour of ferromagnetic materials when magnetomechanical coupling is taken into account. The time‐discretization is based on the backward Euler method with projection. In the numerical approximation, the two equations are decoupled by a suitable linearization in order to solve the magnetic and mechanic part separately. The resulting semi‐implicit scheme is linear and allows larger time‐steps than explicit methods. We prove stability and error estimates for the presented time discretization in 2D. Finally, we test the accuracy of the scheme on an academic numerical example with known exact solution. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A finite‐volume scheme for the stationary unipolar quantum drift‐diffusion equations for semiconductors in several space dimensions is analyzed. The model consists of a fourth‐order elliptic equation for the electron density, coupled to the Poisson equation for the electrostatic potential, with mixed Dirichlet‐Neumann boundary conditions. The numerical scheme is based on a Scharfetter‐Gummel type reformulation of the equations. The existence of a sequence of solutions to the discrete problem and its numerical convergence to a solution to the continuous model are shown. Moreover, some numerical examples in two space dimensions are presented. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1483–1510, 2011  相似文献   

7.
The numerical solution for the one‐dimensional complex fractional Ginzburg–Landau equation is considered and a linearized high‐order accurate difference scheme is derived. The fractional centered difference formula, combining the compact technique, is applied to discretize fractional Laplacian, while Crank–Nicolson/leap‐frog scheme is used to deal with the temporal discretization. A rigorous analysis of the difference scheme is carried out by the discrete energy method. It is proved that the difference scheme is uniquely solvable and unconditionally convergent, in discrete maximum norm, with the convergence order of two in time and four in space, respectively. Numerical simulations are given to show the efficiency and accuracy of the scheme. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 105–124, 2017  相似文献   

8.
The generalized regularized long wave (GRLW) equation has been developed to model a variety of physical phenomena such as ion‐acoustic and magnetohydrodynamic waves in plasma, nonlinear transverse waves in shallow water and phonon packets in nonlinear crystals. This paper aims to develop and analyze a powerful numerical scheme for the nonlinear GRLW equation by Petrov–Galerkin method in which the element shape functions are cubic and weight functions are quadratic B‐splines. The proposed method is implemented to three reference problems involving propagation of the single solitary wave, interaction of two solitary waves and evolution of solitons with the Maxwellian initial condition. The variational formulation and semi‐discrete Galerkin scheme of the equation are firstly constituted. We estimate rate of convergence of such an approximation. Using Fourier stability analysis of the linearized scheme we show that the scheme is unconditionally stable. To verify practicality and robustness of the new scheme error norms L2, L and three invariants I1, I2, and I3 are calculated. The computed numerical results are compared with other published results and confirmed to be precise and effective.  相似文献   

9.
In this article, numerical solutions of the generalized Burgers–Fisher equation are obtained using a compact finite difference method with minimal computational effort. To verify this, a combination of a sixth‐order compact finite difference scheme in space and a low‐storage third‐order total variation diminishing Runge–Kutta scheme in time have been used. The computed results with the use of this technique have been compared with the exact solution to show the accuracy of it. The approximate solutions to the equation have been computed without transforming the equation and without using linearization. Comparisons indicate that there is a very good agreement between the numerical solutions and the exact solutions in terms of accuracy. The present method is seen to be a very good alternative to some existing techniques for realistic problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

10.
In this paper, an efficient numerical procedure for the generalized nonlinear time‐fractional Klein–Gordon equation is presented. We make use of the typical finite difference schemes to approximate the Caputo time‐fractional derivative, while the spatial derivatives are discretized by means of the cubic trigonometric B‐splines. Stability and convergence analysis for the numerical scheme are discussed. We apply our scheme to some typical examples and compare the obtained results with the ones found by other numerical methods. The comparison shows that our scheme is quite accurate and can be applied successfully to a variety of problems of applied nature.  相似文献   

11.
We propose an integrable discrete model of one‐dimensional soil water infiltration. This model is based on the continuum model by Broadbridge and White, which takes the form of nonlinear convection–diffusion equation with a nonlinear flux boundary condition at the surface. It is transformed to the Burgers equation with a time‐dependent flux term by the hodograph transformation. We construct a discrete model preserving the underlying integrability, which is formulated as the self‐adaptive moving mesh scheme. The discretization is based on linearizability of the Burgers equation to the linear diffusion equation, but the naïve discretization based on the Euler scheme which is often used in the theory of discrete integrable systems does not necessarily give a good numerical scheme. Taking desirable properties of a numerical scheme into account, we propose an alternative discrete model that produces solutions with similar accuracy to direct computation on the original nonlinear equation, but with clear benefits regarding computational cost.  相似文献   

12.
The cubic B‐spline collocation scheme is implemented to find numerical solution of the generalized Burger's–Huxley equation. The scheme is based on the finite‐difference formulation for time integration and cubic B‐spline functions for space integration. Convergence of the scheme is discussed through standard convergence analysis. The proposed scheme is of second‐order convergent. The accuracy of the proposed method is demonstrated by four test problems. The numerical results are found to be in good agreement with the exact solutions. Results are compared with other results given in literature. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

13.
New one‐leg multistep time discretizations of nonlinear evolution equations are investigated. The main features of the scheme are the preservation of the non‐negativity and the entropy dissipation structure of the diffusive equations. The key ideas are to combine Dahlquist's G‐stability theory with entropy dissipation methods and to introduce a nonlinear transformation of variables, which provides a quadratic structure in the equations. It is shown that G‐stability of the one‐leg scheme is sufficient to derive discrete entropy dissipation estimates. The general result is applied to a cross‐diffusion system from population dynamics and a nonlinear fourth‐order quantum diffusion model, for which the existence of semidiscrete weak solutions is proved. Under some assumptions on the operator of the evolution equation, the second‐order convergence of solutions is shown. Moreover, some numerical experiments for the population model are presented, which underline the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1119–1149, 2015  相似文献   

14.
A high‐order finite difference method for the two‐dimensional complex Ginzburg–Landau equation is considered. It is proved that the proposed difference scheme is uniquely solvable and unconditionally convergent. The convergent order in maximum norm is two in temporal direction and four in spatial direction. In addition, an efficient alternating direction implicit scheme is proposed. Some numerical examples are given to confirm the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 876–899, 2015  相似文献   

15.
A predictor–corrector scheme is developed for the numerical solution of the sine‐Gordon equation using the method of lines approach. The solution of the approximating differential system satisfies a recurrence relation, which involves the cosine function. Pade' approximants are used to replace the cosine function in the recurrence relation. The resulting schemes are analyzed for order, stability, and convergence. Numerical results demonstrate the efficiency and accuracy of the predictor–corrector scheme over some well‐known existing methods. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 133–146, 2000  相似文献   

16.
A new nonstandard Eulerian‐Lagrangian method is constructed for the one‐dimensional, transient convective‐dispersive transport equation with nonlinear reaction terms. An “exact” difference scheme is applied to the convection‐reaction part of the equation to produce a semi‐discrete approximation with zero local truncation errors with respect to time. The spatial derivatives involved in the remaining dispersion term are then approximated using standard numerical methods. This approach leads to significant, qualitative improvements in the behavior of the numerical solution. It suppresses the numerical instabilities that arise from the incorrect modeling of derivatives and nonlinear reaction terms. Numerical experiments demonstrate the scheme's ability to model convection‐dominated, reactive transport problems. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 617–624, 1999  相似文献   

17.
In this study, we propose a fully discrete energy stable scheme for the phase-field moving contact line model with variable densities and viscosities. The mathematical model comprises a Cahn–Hilliard equation, Navier–Stokes equation, and the generalized Navier boundary condition for the moving contact line. A scalar auxiliary variable is employed to transform the governing system into an equivalent form, thereby allowing the double well potential to be treated semi-explicitly. A stabilization term is added to balance the explicit nonlinear term originating from the surface energy at the fluid–solid interface. A pressure stabilization method is used to decouple the velocity and pressure computations. Some subtle implicit–explicit treatments are employed to deal with convention and stress terms. We establish a rigorous proof of the energy stability for the proposed time-marching scheme. A finite difference method based on staggered grids is then used to spatially discretize the constructed time-marching scheme. We also prove that the fully discrete scheme satisfies the discrete energy dissipation law. Our numerical results demonstrate the accuracy and energy stability of the proposed scheme. Using our numerical scheme, we analyze the contact line dynamics based on a shear flow-driven droplet sliding case. Three-dimensional droplet spreading is also investigated based on a chemically patterned surface. Our numerical simulation accurately predicts the expected energy evolution and it successfully reproduces the expected phenomena where an oil droplet contracts inward on a hydrophobic zone and then spreads outward rapidly on a hydrophilic zone.  相似文献   

18.
In this article, we study an explicit scheme for the solution of sine‐Gordon equation when the space discretization is carried out by an overlapping multidomain pseudo‐spectral technique. By using differentiation matrices, the equation is reduced to a nonlinear system of ordinary differential equations in time that can be discretized with the explicit fourth‐order Runge–Kutta method. To achieve approximation with high accuracy in large domains, the number of space grid points must be large enough. This yields very large and full matrices in the pseudo‐spectral method that causes large memory requirements. The domain decomposition approach provides sparsity in the matrices obtained after the discretization, and this property reduces storage for large matrices and provides economical ways of performing matrix–vector multiplications. Therefore, we propose a multidomain pseudo‐spectral method for the numerical simulation of the sine‐Gordon equation in large domains. Test examples are given to demonstrate the accuracy and capability of the proposed method. Numerical experiments show that the multidomain scheme has an excellent long‐time numerical behavior for the sine‐Gordon equation in one and two dimensions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
In this article, an efficient fourth‐order accurate numerical method based on Padé approximation in space and singly diagonally implicit Runge‐Kutta method in time is proposed to solve the time‐dependent one‐dimensional reaction‐diffusion equation. In this scheme, we first approximate the spatial derivative using the second‐order central finite difference then improve it to fourth‐order by applying Padé approximation. A three stage fourth‐order singly diagonally implicit Runge‐Kutta method is then used to solve the resulting system of ordinary differential equations. It is also shown that the scheme is unconditionally stable, and is suitable for stiff problems. Several numerical examples are solved by the scheme and the efficiency and accuracy of the new scheme are compared with two widely used high‐order compact finite difference methods. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1423–1441, 2011  相似文献   

20.
We present in this article a very adapted finite volume numerical scheme for transport type‐equation. The scheme is an hybrid one combining an anti‐dissipative method with down‐winding approach for the flux (Després and Lagoutière, C R Acad Sci Paris Sér I Math 328(10) (1999), 939–944; Goudon, Lagoutière, and Tine, Math Method Appl Sci 23(7) (2013), 1177–1215) and an high accurate method as the WENO5 one (Jiang and Shu, J Comput Phys 126 (1996), 202–228). The main goal is to construct a scheme able to capture in exact way the numerical solution of transport type‐equation without artifact like numerical diffusion or without “stairs” like oscillations and this for any regular or discontinuous initial distribution. This kind of numerical hybrid scheme is very suitable when properties on the long term asymptotic behavior of the solution are of central importance in the modeling what is often the case in context of population dynamics where the final distribution of the considered population and its mass preservation relation are required for prediction. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1114–1142, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号