首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes the preparation of a nanocomposites fabricated from monodispersed 4‐nm iron oxide (Fe3O4) coated on the surface of carboxylic acid containing multi‐walled carbon nanotube (c‐MWCNT) and polypyrrole (PPy) by in situ chemical oxidative polymerization. High‐resolution transmission electron microscopy images and X‐ray diffraction (XRD) data indicate that the resulting Fe3O4 nanoparticles synthesized using the thermal decomposition are close to spherical dots with a particle size about 4 ± 0.2 nm. The resulting nanoparticles were further mixed with c‐MWCNT in an aqueous solution containing with anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate to form one‐dimensional Fe3O4 coated c‐MWCNT template for further preparation of nanocomposite. Structural and morphological analysis using field‐emission scanning electron microscopy, high‐resolution transmission electron microscopy, and XRD showed that the fabricated Fe3O4 coated c‐MWCNT/PPy nanocomposites are one‐dimensional core (Fe3O4 coated c‐MWCNT)‐shell (PPy) structures. The conductivities of these Fe3O4 coated c‐MWCNT/PPy nanocomposites are about four times higher than those of pure PPy matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 727–733, 2008  相似文献   

2.
《先进技术聚合物》2018,29(5):1377-1384
In this work, thermoplastic polyurethane‐filled montmorillonite‐polypyrrole (TPU/Mt‐PPy) was prepared through melt mixing process for using in electromagnetic shielding applications. The effect of conducting filler content and type, sample thickness, and X‐band frequency range on the electromagnetic interference shielding effectiveness (EMI SE) and EMI attenuation mechanism was investigated. A comparative study of electrical and microwave absorption properties of TPU/Mt‐PPy nanocomposites and TPU/PPy blends was also reported. The total EMI SE average and electrical conductivity of all Mt‐PPy.Cl or Mt‐PPy.DBSA nanocomposites are higher than those found for TPU/PPy.Cl and TPU/PPy.DBSA blends. This behavior was attributed to the higher aspect ratio and better dispersion of the nanostructured Mt‐PPy when compared with neat PPy. Moreover, the presence of Mt‐PPy into TPU matrix increases absorption loss (SEA) mechanism, contributing to increase EMI SE. The total EMI SE values of nanocomposites containing 30 wt% of Mt‐PPy.DBSA with 2 and 5 mm thickness were approximately 16.6 and approximately 36.5 dB, respectively, corresponding to the total EMI of 98% (75% by absorption) and 99.9% (88% by absorption). These results highlight that the nanocomposites studied are promising materials for electromagnetic shielding applications.  相似文献   

3.
Nature has succeeded in creating numerous bionanocomposites such as bones and teeth consisting of nano‐platelets and biopolymers. Understanding of the mechanisms of formation and of the relation between structure and properties is vital for development of new materials for biomedical and engineering applications. In this work, varying contents of nano‐platelet‐like hydroxyapatite (HAp) has been used to reinforce gelatin (Gel) to produce nanocomposites. The prepared HAp/Gel nanocomposites were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG/DTG) analyses. XRD, TEM, and FTIR results confirm the synthesis of intercalated and exfoliated nanostructures depending on the amount of gelatin. TG results reveal that the intercalated HAp/gelatin nanocomposites show improved thermal properties as compared to pristine gelatin. The results reported here can be expanded to other HAp–polymer systems, thus paving a new way of designing and fabricating biomemitic nanocomposites for future engineering and particularly for biomedical applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Processing, electrical, and electromagnetic interference (EMI) shielding behaviors of carbon nanotube (CNT)/acrylonitrile–butadiene–styrene (ABS) nanocomposites were studied as function of CNT concentration. The nanocomposites were prepared by melt mixing followed by compression molding. The selective and good level of dispersion of CNT in the styrene–acrylonitrile section of the ABS polymer was found to create conductive networks in the ABS matrix at a nanofiller loading of 0.75 wt %. At this nanofiller loading, the nanocomposite electrical conductivity was 10?5 S/m. This conductivity makes the nanocomposite suitable for electrostatic discharge protection applications. The EMI shielding effectiveness of the nanocomposites increased with the increase in nanofiller concentration. In the 100–1500 MHz frequency range, 1.1 mm thick plates made of ABS nanocomposite filled with 5 wt % CNT exhibit an EMI shielding effectiveness of 24 dB. At this shielding level, the nanocomposite is suitable for a broad range of applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

5.
Polyaniline (PANI) doped with p‐toluene sulfonic acid was synthesized by chemical polymerization method using (NH4)2S2O8 as an oxidizing agent. This is a single step polymerization process for the direct synthesis of the conducting emeraldine salt (ES) phase, without the need of doping, dedoping, and redoping of the polymer. Presence of a free carrier tail at higher wavelength, characteristic of extended coil conformation along with a sharp polaronic peak is observed in the UV–vis spectrum of doped PANI in m‐cresol solvent. FT‐IR studies show the characteristic peaks of ES phase along with a sharp peak at 1120 cm?1 representing vibration band of the dopant ion. Clumps of small fibers resulting in a sponge‐like structure was observed under scanning electron microscope. Thermal studies revealed a three‐step decomposition pattern. Conductivity is found to increase with an increase in the temperature showing “thermal activation behavior.” Decrease in resistance with increasing humidity is observed in a broad range of humidity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2161–2169, 2005  相似文献   

6.
Size‐controllable polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites have been synthesized by in situ chemical oxidation polymerization directed by various concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB). Raman spectra, FTIR, SEM, and TEM were used to characterize their structure and morphology. These results showed that the composites are core (MWCNT)–shell (PPy) tubular structures with the thickness of the PPy layer in the range of 20–40 nm, depending on the concentration of CTAB. Raman and FTIR spectra of the composites are almost identical to those of PPy alone. The electrical conductivities of these composites are 1–2 orders of magnitude higher than those of PPy without MWCNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6449–6457, 2006  相似文献   

7.
A state‐of‐the‐art operando spectroscopic technique is applied to Co/TiO2 catalysts, which account for nearly half of the world's transportation fuels produced by Fischer–Tropsch catalysis. This allows determination of, at a spatial resolution of approximately 50 nm, the interdependence of formed hydrocarbon species in the inorganic catalyst. Observed trends show intra‐ and interparticular heterogeneities previously believed not to occur in particles under 200 μm. These heterogeneities are strongly dependent on changes in H2/CO ratio, but also on changes thereby induced on the Co and Ti valence states. We have captured the genesis of an active FTS particle over its propagation to steady‐state operation, in which microgradients lead to the gradual saturation of the Co/TiO2 catalyst surface with long chain hydrocarbons (i.e., organic film formation).  相似文献   

8.
Spray pyrolysis technique was applied to deposit two sets of ultra‐thin layers of tin dioxide (SnO2). For the first and second sets, 0.01 and 0.05 molar precursor solutions were prepared, respectively. In both sets, utilizing the X‐ray reflectivity (XRR) technique, the effect of precursor concentration (PC) and precursor volume (PV) on the layer structure are investigated. The layer thickness of the samples, in each set, is a PV‐dependent parameter. For the same PV, samples with higher PC have a larger thickness and higher density. The electron density profiles deduced from XRR data analyses establish a link between measured values of sheet resistance and electron densities. The samples with higher PV and PC show less sheet resistance. The quantum size effect was utilized to show that the surface roughness for layers of more than almost 200 Å of samples in set two plays no role in the layer conductivity. Meanwhile, the same effect explains, adequately, the role of the surface roughness in the resistivity of the ultra‐thin layers in Set 1.  相似文献   

9.
A series of electrically conductive zwitterion hybrid materials were facilely synthesized with anionic acacia gum (AG) and cationic HCl doped polyaniline (PANI) through radical copolymerization method. A representative acacia gum‐polyaniline hybrid (AG‐PANI) was characterized using UV‐vis, FTIR, 1H NMR, and SEM. HCl doped AG‐PANI possesses zwitterion character due to the presence of NH on PANI and ? COO? of AG. The cyclic voltammogram of AG‐PANI showed three anodic peaks at 0.20 V, 0.58 V, and 0.64 V along with two cathodic peaks at 0.50 V and 0.40 V with large capacitive background currents. AG‐PANI exhibited electrical conductivity that was found dependent on the ratio of aniline to AG, temperature, and pH. Its electrical conductivity versus temperature plot indicated Mott's nearest‐neighbor hopping mechanism at the temperature range 83–323 K. The hybridization of AG and PANI yielded eco‐friendly advanced functional materials for technological applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A series of new phosphoramides with general formula RP(O)X2, where R = amino/p‐methylphenoxy and X = amine, were synthesized and characterized by 1H, 13C, 31P nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy and elemental analysis. The 31P{1H} NMR spectra show that among compounds 7–9 containing 2‐, 3‐, and 4‐aminopyridinyl moieties, respectively, the shielding order of the P atom decreases as 7 > 9 > 8 . Also, the structure of compound 7 was determined by X‐ray crystallography. In this structure, repeated noncentrosymmetric dimers are formed by two strong intermolecular N(1)‐H(1N)…N(2) and N(3)‐H(3N)…O(1) hydrogen bonds. Taking into account weak intermolecular C(17)‐H(17C)…N(4), C(17)‐H(17E)…N(4), C(2)‐H(2A)…O(2), and also weak aromatic C—H…C interactions, a three‐dimensional polymeric chain is created in the crystalline network. The density functional theory calculations at B3LYP, B3PW91, and M06 levels using the 6–31+G** basis set were in good agreement with the X‐ray crystallography data.  相似文献   

11.
X‐ray powder diffraction in reflection (Bragg–Brentano parafocusing geometry) is extensively used to characterize the structure of polymer/layered silicate nanocomposites (PLSNs). The large basal spacings (d001 > 2.0 nm) necessitates the collection of data at scattering angles (2θ) of less than 10°. The calculation of an ideal scattering profile for PLSNs provides an avenue to ascertain the influence of experimental parameters and the arrangement, organization, concentration, and composition of constituents on the experimentally observed pattern. This enables better experimental technique, more complete utilization of the scattering data, insight into inconsistencies between scattering and microscopy, and minimization of incorrect interpretation or overinterpretation of data. Because of the strong θ dependence of theoretical and experimental factors at low values of 2θ, careful sample preparation and data evaluation are necessary and should be complemented by microscopic observations, especially for PLSNs with low volume fractions of organically‐modified layered silicates (OLS) that are suspected of having exfoliated morphologies. X‐ray powder diffraction in reflection alone is insufficient to completely characterize and ascribe PLSN morphology. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1590–1600, 2002  相似文献   

12.
A high‐yield synthesis toward 5,5′‐bis(silyl)‐functionalized 3,3′‐dibromo‐2,2′‐dithiophenes with very efficient work‐up procedure is presented. The molecular structures of two silyl functionalized dibromo‐dithiophenes in the solid state have been determined to investigate the structural influences of different functional groups on the degree of π‐conjugation within the dithiophene moieties, as well as their packing properties. The planar alignment of the tert‐butyldimethylsilyl‐functionalized dibromo‐dithiophene shows a significantly higher degree of conjugation of the π‐system with a more favorable molecular packing than the skewed arrangement of the triisopropylsilyl‐substituted species. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Four inorganic‐organic hybrid compounds with the formulae (1,10‐phen)(VO2)(IO3) ( 1 ), (2,2′‐bipy)(VO2)(IO3) ( 2 ), [Cu3(2,2′‐bipy)3Cl3(IO3)2]·I1.5 ( 3 ), and [Cu(2,2′‐bipy)(H2O)(IO3)2]· (H2O)2 ( 4 ) are hydrothermally synthesized at 120 °C for 6 d and characterized by single‐crystal X‐ray diffraction. The use of two different bidentate organodiamine ligands 1,10‐phen and 2,2′‐bipy in the V/I/O system gives rise to compounds 1 and 2 , which crystallize in a monoclinic system with the space group C2/c, a = 17.8131(6) Å, b = 15.0470(7) Å, c = 12.9902(4) Å, β = 133.095(2)°, V = 2542.49(17) Å3 for 1 and space group P21/c, a = 13.3095(5) Å, b = 15.0993(8) Å, c = 13.0454(4) Å, β = 116.971(2)°, V = 2335.88(17) Å3 for 2 . The use of the bidentate organodiamine ligand 2,2′‐bipy in the Cu/I/O system gives rise to the variety in the structure of products 3 and 4 , which crystallize in a triclinic system with the same space group . a = 8.5143(2) Å, b = 10.4908(3) Å, c = 22.8420(6) Å, α = 93.769(10)°, β = 91.723(10)°, γ = 112.111(10)°, V = 1882.83(9) Å3 for 3 and a = 6.731(6) Å, b = 10.110(4) Å, c = 12.899(6) Å, α = 106.00(5)°, β = 95.45(4)°, γ = 107.69(6)°, V = 788.4(9) Å3 for 4 . The solid‐state structures of the compounds 1 and 2 have chains with repeat units of alternative corner sharing of [VO4N2] octahedra and [IO3] pyramids. Compound 3 is a chain containing [IO3] pyramids and [VO4N] square pyramids and compound 4 consists of Cu(2,2′‐bipy)2+ linked by one water molecule and two [IO3] pyramids. The thermal stabilities of the compounds are investigated.  相似文献   

14.
Our goal was to obtain the X‐ray crystal structure of the glycosylated chemokine Ser‐CCL1. Glycoproteins can be hard to crystallize because of the heterogeneity of the oligosaccharide (glycan) moiety. We used glycosylated Ser‐CCL1 that had been prepared by total chemical synthesis as a homogeneous compound containing an N‐linked asialo biantennary nonasaccharide glycan moiety of defined covalent structure. Facile crystal formation occurred from a quasi‐racemic mixture consisting of glycosylated L ‐protein and non‐glycosylated‐D ‐protein, while no crystals were obtained from the glycosylated L ‐protein alone. The structure was solved at a resolution of 2.6–2.1 Å. However, the glycan moiety was disordered: only the N‐linked GlcNAc sugar was well‐defined in the electron density map. A racemic mixture of the protein enantiomers L ‐Ser‐CCL1 and D ‐Ser‐CCL1 was also crystallized, and the structure of the true racemate was solved at a resolution of 2.7–2.15 Å. Superimposition of the structures of the protein moieties of L ‐Ser‐CCL1 and glycosylated‐L ‐Ser‐CCL1 revealed there was no significant alteration of the protein structure by N‐glycosylation.  相似文献   

15.
Poly[ethyl trifluorobuty-2-noate] (PETFB) was prepared from ethyltrifluorobuty-2-noate by anionic polymerization.The polymer was examined by UV-Vis,IR and NMR spec-trometries.It possessed π-conjugated backbone in the main chain.No significant variation in the electrical conductivity of BF3-doped PETFB was observed after more than three months' storage,indicating improved conductive stability in air as compared with polyacetylene.  相似文献   

16.
The coordination chemistry of multinuclear metal compounds is important because of their relevance to the multi‐metal active sites of various metalloproteins and metalloenzymes. Multinuclear CuII and MnIII compounds are of interest due to their various properties in the fields of coordination chemistry, inorganic biochemistry, catalysis, and optical and magnetic materials. Oxygen‐bridged binuclear MnIII complexes generally exhibit antiferromagnetic interactions and a few examples of ferromagnetic interactions have also been reported. Binuclear CuII complexes are important due to the fact that they provide examples of the simplest case of magnetic interaction involving only two unpaired electrons. Two novel dioxygen‐bridged copper(II) and manganese(III) Schiff base complexes, namely bis(μ‐4‐bromo‐2‐{[(3‐oxidopropyl)imino]methyl}phenolato)dicopper(II), [Cu2(C10H10BrNO2)2], (1), and bis(diaqua{4,4′‐dichloro‐2,2′‐[(1,1‐dimethylethane‐1,2‐diyl)bis(nitrilomethanylylidene)]diphenolato}manganese(III)) bis{μ‐4,4′‐dichloro‐2,2′‐[(1,1‐dimethylethane‐1,2‐diyl)bis(nitrilomethanylylidene)]diphenolato}bis[aquamanganese(III)] tetrakis(perchlorate) ethanol disolvate, [Mn(C18H16Cl2N2O2)(H2O)2]2[Mn2(C18H16Cl2N2O2)2(H2O)2](ClO4)4·2C2H5OH, (2), have been synthesized and single‐crystal X‐ray diffraction has been used to analyze their crystal structures. The structure analyses of (1) and (2) show that each CuII atom is four‐coordinated, with long weak Cu…O interactions of 2.8631 (13) Å linking the dinuclear halves of the centrosymmetric tetranucelar molecules, while each MnIII atom is six‐coordinated. The shortest intra‐ and intermolecular nonbonding Mn…Mn separations are 3.3277 (16) and 5.1763 (19) Å for (2), while the Cu…Cu separations are 3.0237 (3) and 3.4846 (3) Å for (1). The magnetic susceptibilities of (1) and (2) in the solid state were measured in the temperature range 2–300 K and reveal the presence of antiferromagnetic spin‐exchange interactions between the transition metal ions.  相似文献   

17.
A new series of N‐phosphinylureas 5b, 6a–7c was synthesized and characterized by 1H, 13C, 31P NMR, IR, and elemental analysis. The three‐dimensional structure of 5b has been determined by X‐ray crystallography. The crystal structure revealed the existence of four independent molecules. All structures form two chains with different arrangements and connect to each other via hydrogen bonds to produce two‐dimensional polymeric chains. The cytotoxicity of cyclophosphamide (a standard antitumor compound) and its nine analogues with formula R1C6H4 NHC(O)NHP(O)XCH2C(R2)2 CH2Y(X = Y = NH, R2 = CH3, R1 = H ( 5a ), CH3 ( 5b ), NO2 ( 5c ), X = O, Y = NH, R2 = H, R1 = H ( 6a , CH3 ( 6b ), NO2 ( 6c ), and X = Y = O, R2 = CH3, R1 = H ( 7a ), CH3 ( 7b ), NO2 ( 7c )) as well as phenyl urea were evaluated in vitro against three human tumor cell lines K562, MDA‐MB‐231, and HepG2. The results showed that most of the compounds have significant activity against the selected cell lines. Also, HepG2 cells were more sensitive to all the tested compounds than other cell lines. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 23:74–83, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20754  相似文献   

18.
 Two synthetic routes to surface-aminated polypyrrole–silica nanocomposite particles have been investigated. Route 1 involved the initial synthesis of homopolypyrrole – silica particles as described previously, followed by surface amination using 3-aminopropyltriethoxy-silane. In Route 2 aminated polypyrrole–silica particles were synthesized directly by copolymerising an N-substituted aminopyrrole comonomer with pyrrole in the presence of an ultrafine silica sol. Both types of aminated particles were characterized in terms of their particle size and morphology, long-term colloid stability and degree of amination using transmission electron microscopy, disc centrifuge photosedimentometry and zeta potential measurements, respectively. Received: 19 May 1998 Accepted: 15 June 1998  相似文献   

19.
Oxazolidinethione compounds were synthesized starting from racemic and enantiopure β‐amino alcohols. The molecular structure of oxazolidinethione 6a was elucidated by single‐crystal x‐ray crystallography. Oxazolidinethione compounds screened for antimicrobial activity showed mild minimum inhibitory concentration values.  相似文献   

20.
In general, the conductivity of polypyrrole (PPy) is reduced by addition of magnetic nanoparticles as the additives owing to insulating effect of magnetic nanoparticles. In this article, novel electromagnetic functionalized PPy composite nanostructures were prepared by a template‐free method associated with γ‐Fe2O3 nano‐needles as the hard templates in the presence of p‐toluene‐sulfonic acid (p‐TSA) and FeCl3·6H2O as the dopant and oxidant, respectively. It was found that the molar ratio of γ‐Fe2O3 to pyrrole monomer represented by [γ‐Fe2O3]/[Py] ratio strongly affected the morphology and the conductivity of the γ‐Fe2O3/PPy composite nanostructures. A growth mechanism for the composite nanostructures was proposed based on the variance of the morphology with the [γ‐Fe2O3]/[Py] ratio. Compared with previously reported γ‐Fe2O3/PPy composites, the as‐prepared novel composite nanostructures showed much higher conductivity (up to ~50 times higher). Moreover, the synthesized γ‐Fe2O3/PPy composite nanostructures displayed ferromagnetic behavior with a high coercive force. Explanations for these interesting observations were made in terms of the magnetic interaction between ferromagnetic γ‐Fe2O3 nano‐needles and spin‐polaron of PPy nanotubes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4446–4453, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号