首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
We report the fabrication of multiwalled carbon nanotube (MWCNT)-incorporated electrospun polyvinyl alcohol (PVA)/chitosan (CS) nanofibers with improved cellular response for potential tissue engineering applications. In this study, smooth and uniform PVA/CS and PVA/CS/MWCNTs nanofibers with water stability were formed by electrospinning, followed by crosslinking with glutaraldehyde vapor. The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and mechanical testing, respectively. We showed that the incorporation of MWCNTs did not appreciably affect the morphology of the PVA/CS nanofibers; importantly the protein adsorption ability of the nanofibers was significantly improved. In vitro cell culture of mouse fibroblasts (L929) seeded onto the electrospun scaffolds showed that the incorporation of MWCNTs into the PVA/CS nanofibers significantly promoted cell proliferation. Results from this study hence suggest that MWCNT-incorporated PVA/CS nanofibrous scaffolds with small diameters (around 160 nm) and high porosity can mimic the natural extracellular matrix well, and potentially provide many possibilities for applications in the fields of tissue engineering and regenerative medicine.  相似文献   

3.
A combination of bioceramics and nanofibrous scaffolds holds promising potential for inducing of mineralization in connective tissues. The aim of the present study was to investigate the attachment, proliferation and odontogenic differentiation of dental pulp stem cells (DPSC) on poly(l ‐lactide) (PLLA) nanofibers coated with mineral trioxide aggregate (MTA). Polymeric scaffolds were fabricated via the electrospinning method and their surface was coated with MTA. DPSC were isolated from dental pulp and their biological behavior was evaluated on scaffolds and the control group using MTT assay. Alkaline phosphatase (ALP) activity, biomineralization and the expression of odontogenic genes were analyzed during odontogenic differentiation. Isolated DPSC showed spindle‐shaped morphology with multi‐lineage differentiation potential and were positive for CD73, CD90 and CD105. MTA‐coated PLLA (PLLA/MTA) exhibited nanofibrous structure with average fiber diameter of 756 ± 157 nm and interconnected pores and also suitable mechanical properties. Similar to MTA, these scaffolds were shown to be biocompatible and to support the attachment and proliferation of DPSC. ALP activity transiently peaked on day 14 and was significantly higher in PLLA/MTA scaffolds than in the control groups. In addition, increasing biomineralization was observed in all groups with a higher amount in PLLA/MTA. Odontogenic‐related genes, DSPP and collagen type I showed a higher expression in PLLA/MTA on days 21 and 14, respectively. Taken together, MTA/PLLA electrospun nanofibers enhanced the odontogenic differentiation of DPSC and showed the desired characteristics of a pulp capping material.  相似文献   

4.
《先进技术聚合物》2018,29(1):451-462
Scaffold, an essential element of tissue engineering, should provide proper physical and chemical properties and evolve suitable cell behavior for tissue regeneration. Polycaprolactone/Gelatin (PCL/Gel)‐based nanocomposite scaffolds containing hydroxyapatite nanoparticles (nHA) and vitamin D3 (Vit D3) were fabricated using the electrospinning method. Structural and mechanical properties of the scaffold were determined by scanning electron microscopy (SEM) and tensile measurement. In this study, smooth and bead‐free morphology with a uniform fiber diameter and optimal porosity level with appropriate pore size was observed for PCL/Gel/nHA nanocomposite scaffold. The results indicated that adding nHA to PCL/Gel caused an increase of the mechanical properties of scaffold. In addition, chemical interactions between PCL, gelatin, and nHA molecules were shown with XRD and FT‐IR in the composite scaffolds. MG‐63 cell line has been cultured on the fabricated composite scaffolds; the results of viability and adhesion of cells on the scaffolds have been confirmed using MTT and SEM analysis methods. Here in this study, the culture of the osteoblast cells on the scaffolds showed that the addition of Vit D3 to PCL/Gel/nHA scaffold caused further attachment and proliferation of the cells. Moreover, DAPI staining results showed that the presence and viability of the cells were greater in PCL/Gel/nHA/Vit D3 scaffold than in PCL/Gel/nHA and PCL/Gel scaffolds. The results also approved increasing cell proliferation and alkaline phosphatase (ALP) activity for MG‐63 cells cultured on PCL/Gel/nHA/Vit D3 scaffold. The results indicated superior properties of hydroxyapatite nanoparticles and vitamin D3 incorporated in PCL/Gel scaffold for use in bone tissue engineering.  相似文献   

5.
The ability to mimic the chemical, physical and mechanical properties of the natural extra‐cellular matrix is a key requirement for tissue engineering scaffolds to be successful. In this study, we successfully fabricated aligned nanofibrous multi‐component scaffolds for bone tissue engineering using electrospinning. The chemical features were mimicked by using the natural components of bone: collagen and nano‐hydroxyapatite along with poly[(D ,L ‐lactide)‐co‐glycolide] as the major component. Anisotropic features were mimicked by aligning the nanofibers using a rotating mandrel collector. We evaluated the effect of incorporation of nano‐HA particles to the system. The morphology and mechanical properties revealed that,at low concentrations, nano‐HA acted as a reinforcement. However, at higher nano‐HA loadings, it was difficult to disrupt aggregations and, hence, a detrimental effect was observed on the overall scaffold properties. Thermal analysis showed that there were slight interactions between the individual components even though the polymers existed as a two‐phase system. Preliminary in vitro cell‐culture studies revealed that the scaffold supported cell adhesion and spreading. The cells assumed a highly aligned morphology along the direction of fiber orientation. Protein adsorption experiments revealed that the synergistic effect of increased surface area and the presence of nano‐HA in the polymer matrix enhanced total protein adsorption. Crosslinking with 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride resulted in improved mechanical properties of the scaffolds and improved degradation stability, under physiological conditions.

  相似文献   


6.
One‐dimensional nanofibers have attracted tremendous attention because of their potential applications. Electrospinning technology enables industrial production of these nanofibers. This study aims to fabricate one‐dimensional ZnO doped TiO2 by electrospinning and to characterize these hybrid nanofibers. The nanocomposite was prepared using colloidal gel composed of zinc nitrate, titanium isopropoxide and polyvinyl acetate. X‐ray diffraction, energy dispersive x‐ray analysis and transmission electron microscopy analysis confirmed the purity and crystalline nature of this material, whereas the diameter of these nanofibres estimated from scanning electron microscope (SEM), field emission SEM and transmission electron microscopy are between 200 and 300 nm. Cell counting with Kit‐8 assay at regular time intervals and phase‐contrast microscopy data revealed that C2C12 cells proliferated well on ZnO/TiO2 nanofibers between 1 and 10 µg/ml, and cellular attachments are visible by SEM. The nanostructured ZnO/TiO2 hybrid nanofibers show higher cell adhesion, proliferation and spreading behavior compared with the titanium substrate and control. Our study suggests that ZnO/TiO2 nanofibers could potentially be used in tissue engineering applications. The scalability, low cost, reproducibility and high‐throughput capability of this technology is potentially beneficial to examine and optimizing a wide array of cell‐nanofiber systems prior to in vivo experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, first, polyethyleneimine was acrylated and mixed with polyvinyl alcohol solution to prepare photo‐crosslinked polyethyleneimine (PEI)‐based nanofibers by utilizing ultraviolet and electrospinning technique at the same time. For CO2 permeability testing, same formulations were prepared by using solvent casting technique and exposed to ultraviolet light to have polyethyleneimine‐based membrane films. The chemical structures of the nanofibers were characterized by Fourier transform infrared spectroscopy. The thermal properties of nanofibers were examined by thermal gravimetric analysis and differential scanning calorimeter. The morphology of nanofibers was investigated by scanning electron microscopy. CO2 permeabilities of samples were also measured. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
9.
The graphene‐based nanocomposites are considered as great candidates for enhancing electrical and mechanical properties of nonconductive scaffolds in cardiac tissue engineering. In this study, reduced graphene oxide‐silver (rGO‐Ag) nanocomposites (1 and 2 wt%) were synthesized and incorporated into polyurethane (PU) nanofibers via electrospinning technique. Next, the human cardiac progenitor cells (hCPCs) were seed on these scaffolds for in vitro studies. The rGO‐Ag nanocomposites were studied by X‐ray diffraction (XRD), Raman spectroscopy, and transmission electron microscope (TEM). After incorporation of rGO‐Ag into PU nanofibers, the related characterizations were carried out including scanning electron microscope (SEM), TEM, water contact angle, and mechanical properties. Furthermore, PU and PU/nanocomposites scaffolds were used for in vitro studies, wherein hCPCs showed good cytocompatibility via 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay and considerable attachment on the scaffold using SEM studies. Real‐time polymerase chain reaction (PCR) and immunostaining studies confirmed the upregulation of cardiac specific genes including GATA‐4, T‐box 18 (TBX 18), cardiac troponin T (cTnT), and alpha‐myosin heavy chain (α‐MHC) in the PU/rGO‐Ag scaffolds in comparison with neat PU ones. Therefore, these nanofibrous rGO‐Ag–reinforced PU scaffolds can be considered as suitable candidates in cardiac tissue engineering.  相似文献   

10.
Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers were prepared by atmospheric plasma treatment and electrospinning. Atmospheric helium plasma treatment was first used to reduce the AgNO3 precursor in pre-electrospinning solutions into metallic silver nanoparticles, followed by electrospinning into continuous and smooth nanofibers with Ag nanoparticles embedded in the matrix. SEM, TEM, and EDX spectra were used to study the structure and surface elemental composition of the nanofibers. Silver nanoparticles, with diameters ranging between 3 and 6 nm, were found to be uniformly dispersed in the nanofiber matrix. The Ag/PAN nanofibers exhibited slow and long-lasting silver ion release, which provided robust antibacterial activity against both Gram-positive Bacillus cereus and Gram-negative Escherichia coli microorganisms.  相似文献   

11.
A continuous near-field electrospinning (NFES) process has been demonstrated to be able to achieve direct-write and well-aligned chitosan/poly(ethylene oxide) nanofibers. The ability to precisely control and deposit chitosan-based nanofibers in a direct-write manner is favorable in manipulating cells attachment and proliferation at a preferred position. Experimental results show that fiber diameters can be reliably controlled in the range of 265–1255 nm by adjusting various operating parameters of the NFES processes. These prescribed patterns of nanofibers exceed tens of centimeters long and complex configurations such as grid arrays and arc shapes are assembled at specified separations as small as 5 μm. FTIR analysis reveals that NFES nanofibers have a similar morphology and composition as conventional electrospinning counterpart and constitute all components formerly present in the polymer solution. The versatile functionality to fabricate chitosan-based nanofibers with controllable size and directional alignment as well as highly ordered and customized patterns may represent an ideal candidate of a functional biomaterial and in tissue-engineering scaffolds that are predominantly representative of extracellular matrix (ECM).  相似文献   

12.
Hybrid nanofibers from chitosan or N‐carboxyethylchitosan (CECh) and silver nanoparticles (AgNPs) were prepared by electrospinning using HCOOH as a solvent. AgNPs were synthesized in situ in the spinning solution. HCOOH slowed down the cross‐linking of the polysaccharides with GA enabling the reactive electrospinning in the presence of poly(ethylene oxide) (PEO). EDX analyses showed that AgNPs are uniformly dispersed in the nanofibers. Since AgNPs hampered the cross‐linking of chitosan and CECh with GA in the hybrid fibers, the imparting of water insolubility to the fibers was achieved at a second stage using GA vapors. The surface of chitosan/PEO/AgNPs nanofibers was enriched in chitosan and 15 wt.‐% of the incorporated AgNPs were on the fiber surface as evidenced by XPS.

  相似文献   


13.
Here, we demonstrated the fabrication of a composite scaffold (chitosan [CS], collagen [Col], and hydroxyapatite [HA]) with the incorporation of encapsulated Cissus quadrangularis (CQ) extract for tissue engineering applications. First, the crude extract of CQ loaded nanoparticles were synthesized via double emulsion technique using polycaprolactone (PCL) and polyvinyl alcohol (PVA) as oil and aqueous phases, respectively. Both PCL (20, 40, and 80 mg/mL) and PVA (0.5%, 1%, and 3% w/v) concentrations were varied to determine the optimum concentrations for CQ‐loaded nanoparticle preparation. The CQ‐loaded PCL nanoparticles (CQ‐PCL NPs), prepared with 20 mg/mL PCL and 0.5% (w/v) PVA, exhibited the smallest size of 334.22 ± 43.21 nm with 95.54 ± 1.49% encapsulation efficiency. Then, the CQ‐PCL NPs were incorporated into the CS/Col/HA scaffolds. These scaffolds were also studied for their ultrastructure, pore sizes, chemical composition, compressive modulus, water swelling, weight loss, and biocompatibility. The results showed that the addition of CQ‐PCL NPs into the scaffolds did not dramatically alter the ultrastructure and properties of the scaffolds, compared to CS/Col/HA scaffolds alone. However, incorporation of CQ‐PCL NPs in the scaffolds improved the release profile of CQ by preventing the initial burst release and prolonging the release rate of CQ. In addition, the CQ‐PCL NPs‐loaded CS/Col/HA scaffolds supported the attachment and proliferation of MC3T3‐E1 osteoblast cells.  相似文献   

14.
Surface-enhanced Raman scattering (SERS)-active substrates of polyvinyl alcohol/gold-silver (PVA/Au-Ag) nanofibers were prepared using a simple approach involving electrospinning. The tunable surface plasmon resonance (SPR) of gold-silver alloy (Au-Ag alloy) nanoparticles (NPs) was achieved by controlling the feed ratio between gold and silver precursors. A higher concentration of Au-Ag alloy NPs could be obtained than the conventional methods, using 1wt% of PVA as the stabilizer. The Au-Ag alloy structure was demonstrated by HRTEM and STEM-EDX. After the electrospinning, the Au-Ag alloy NPs were successfully embedded in PVA nanofibers, as shown in the SEM and TEM images. Raman spectra displayed an apparent enhancement in the signal of 4-mercaptobenzoic acid (4-MBA), pyridine, and thiophenol molecules pre-absorbed from their ethanol solution onto the PVA/Au-Ag nanofibers. Different SERS effects were achieved by varying the Au content or excitation wavelength.  相似文献   

15.
We fabricated composite fibrous scaffolds from blends of poly(lactide‐co‐glycolide) (PLGA) and nano‐sized hydroxyapatite (HA) via electrospinning. SEM‐EDX and AFM analysis demonstrated that HA was homogeneously dispersed in the nanofibers, and the roughness increased along with the amount of incorporated HA. When hMSCs were cultured on these PLGA/HA composite nanofibers, we found that incorporation of HA on the nanofibers did not affect cell viability whereas increased ALP activity and expression of osteogenic genes as well as the calcium mineralization of hMSCs. Our results indicate that the composite nanofibers can be offered as a potential bone regenerative biomaterial for stem cell based therapies.

  相似文献   


16.
Nanostructured biocomposite scaffolds of poly(l-lactide) (PLLA) blended with collagen (coll) or hydroxyapatite (HA), or both for tissue engineering application, were fabricated by electrospinning. The electrospun scaffolds were characterized for the morphology, chemical and tensile properties by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), water contact angle (WCA), Fourier transform infrared (FTIR) measurement, and tensile testing. Electrospun biocomposite scaffolds of PLLA and collagen or (and) HA in the diameter range of 200-700 nm mimic the nanoscale structure of the extracellular matrix (ECM) with a well-interconnection pore network structure. The presence of collagen in the scaffolds increased their hydrophility, and enhanced cell attachment and proliferation, while HA improved the tensile properties of the scaffolds. The biocompatibility of the electrospun scaffolds and the viability of contacting cells were evaluated by 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) nuclear staining and by fluorescein diacetate (FDA) and propidium iodide (PI) double staining methods. The results support the conclusion that 293T cells grew well on composite scaffolds. Compared with pure PLLA scaffolds a greater density of viable cells was seen on the composites, especially the PLLA/HA/collagen scaffolds.  相似文献   

17.
Poly(aniline‐co‐ethyl 3‐aminobenzoate) (3EABPANI) copolymer was blended with poly(lactic acid) (PLA) and co‐electrospun into nanofibers to investigate its potential in biomedical applications. The relationship between electrospinning parameters and fiber diameter has been investigated. The mechanical and electrical properties of electrospun 3EABPANI‐PLA nanofibers were also evaluated. To assess cell morphology and biocompatibility, nanofibrous mats of pure PLA and 3EABPANI‐PLA were deposited on glass substrates and the proliferation of COS‐1 fibroblast cells on the nanofibrous polymer surfaces determined. The nanofibrous 3EABPANI‐PLA blends were easily fabricated by electrospinning and gave enhanced mammalian cell growth, antioxidant and antimicrobial capabilities, and electrical conductivity. These results suggest that 3EABPANI‐PLA nanofibrous blends might provide a novel bioactive conductive material for biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

18.
Amino‐cellulose‐based nanofibers are prepared by electrospinning of blended solutions of 6‐deoxy‐6‐trisaminoethyl‐amino (TEAE) cellulose and polyvinyl alcohol (PVA). The TEAE cellulose with a degree of substitution of 0.67 is synthesized via a nucleophilic displacement reaction starting from cellulose‐p‐toluenesulfonic acid ester. Several solution characteristics such as polymer concentration, electrical conductivity, and surface tension as well as setup parameters are investigated to optimize the ability of nanofiber formation. These parameters are evaluated using the rheological studies of the solutions. The nanofibers obtained are characterized by scanning electron microscopy (SEM) and show a high antimicrobial activity against Staphylococcus aureus and Klebsiella pneumoniae.

  相似文献   


19.
Polymeric nanocomposite@Pd is one of the crown jewels for the catalysis of cross‐coupling reactions. This Pd nanocomposite on various polymeric supports has been well established to catalyze cross‐coupling reactions, but its preparation supported on the surface of nanofibers has been largely overlooked. Herein, we report the preparation of a poly(acrylic acid) (PAA)/poly(vinyl alcohol) (PVA) nanofiber‐supported N‐heterocyclic carbene–Pd complex. The first step involves the preparation of PAA/PVA nanofibers using the electrospinning process. The second step comprises the reaction of water‐soluble poly(ethylene glycol)‐imidazole with modified PAA/PVA nanofibers followed by introduction of PdCl2 to achieve successfully the desired nanocomposite. The catalytic activity of this nanocomposite was examined in the expeditious synthesis of biaryl compounds using the Suzuki–Miyaura cross‐coupling reaction under mild reaction conditions. The composite offers multiple features such as good hydrophilic properties, high surface area, admirable potential in repeatability tests and being recyclable for several runs without significant loss in its activity under the optimum reaction conditions. Our results showed the superior applicability of this novel nanocatalyst in terms of conversion reaction, yields and turnover frequencies. The structure of the catalyst was characterized using a variety of techniques.  相似文献   

20.
Scalable, bottom‐up chemical synthesis and electrospinning of novel Clsubstituted poly(para‐phenylene terephthalamide) (PPTA) nanofibers are herein reported. To achieve Cl‐PPTA nanofibers, the chemical reaction between the monomers was precisely controlled, and dissolution of the polymer into solvent was tailored to enable anisotropic solution formation and sufficient entanglement molecular weight. Electrospinning processing parameters were studied to understand their effects on fiber formation and mat morphology and then optimized to yield consistently high quality fibers. Importantly, the control of relative humidity during the fiber formation process was found to be critical, likely because water promotes hydrogen bond formation between the PPTA chains. The fiber and mat morphologies resulting from different combinations of chemistry and spinning conditions were observed using scanning electron microscopy, and observations were used as inputs to the optimization process. Tensile properties of single Cl‐PPTA nanofibers were characterized for the first time using a nanomanipulator mounted inside a scanning electron microscope (SEM), and fiber moduli measuring up to 70 GPa, and strengths exceeding 1 GPa were achieved. Given the excellent mechanical properties measured for the nanofibers, this chemical synthesis procedure and electrospinning protocol appear to be a promising route for producing a new class of nanofibers with ultrahigh strength and stiffness. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 563–573  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号