首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
在Gleeble-1500热模拟机上,采用等温压缩试验,研究了一种含Ti和Al的新型钴基耐热合金在850~1150℃温度范围的压缩变形行为.实验结果表明:该合金具有良好的抗高温流变性能,在850℃及应变速率0·0021~2·1s-1范围时其峰值流变应力可以达到360~475MPa.合金的流变行为可用Zener-Hollomon参数来描述.  相似文献   

2.
利用Gleeble-1500热模拟试验机对6005A和6082铝合金进行高温等温压缩试验,研究了在变形温度为450-550℃和应变速率为0.005-10s^-1条件下两种铝合金的热变形流变行为.6005A铝合金在低应变速率条件下,不同变形温度时的流变曲线均呈现波浪形特征,随着应变速率的增加,硬化和软化接近平衡,表现为稳态流变特征;在高应变速率条件下,硬化过程占据主导地位,回复和硬化过程的竞争使流变曲线呈现波浪形上升的趋势.6082铝合金在低应变速率情况下,不同变形温度时的流变曲线未出现周期性波动;在中等应变速率条件下也表现为稳态流变特征;在高应变速率条件下出现波浪形特征.两种铝合金均为正应变速率敏感材料,其热变形是受热激活控制.最后给出了铝合金热变形条件下流变应力、应变速率和变形温度三者之间的关系式.  相似文献   

3.
通过不同热加工参数下的热压缩试验,研究了新型阀门钢5Cr9Si3的高温变形行为.5Cr9Si3钢在850~900℃和1000~1100℃温度区间内峰值应力分别随温度的升高而减小,而在900~1000℃温度区间内出现峰值应力随温度升高而增大的异常现象.进一步的微观组织及相结构演化分析表明:5Cr9Si3钢在900~1000℃温度区间内发生了由铁素体向奥氏体的转变,产生奥氏体相变强化;同时,随着变形温度的提高,碳化物的回溶造成碳元素和铬元素对5Cr9Si3基体固溶强化效果增强.相变强化和固溶强化是导致5Cr9Si3在900~1000℃温度区间内流变应力异常变化的主要原因.  相似文献   

4.
一种新型Al-Cu-Li系合金的热压缩流变应力   总被引:6,自引:0,他引:6  
采用Gleeble-1500热模拟机高温等温压缩试验,研究了一种新型Al-Cu-Li系合金在应变速率为0.01~10s-1、变形温度为300~500℃条件下的流变应力特征.结果表明:流变应力随变形温度的升高而降低,随变形速率的提高而增大;采用Z参数的双曲正弦函数描述该合金高温变形的峰值流变应力,获得了峰值流变应力解析式,其热变形激活能为239.02kJ·mol-1.  相似文献   

5.
AZ31镁合金变形行为的热/力模拟   总被引:4,自引:1,他引:3  
采用GLEEBLE-1500热/力模拟机在变形温度为423~723K,应变速率为0.01~10s^-1,最大变形量为60%的条件下对铸态AZ31镁合金进行热/力模拟研究,并结合热变形后显微组织,分析合金力学性能与显微组织之间的关系。研究结果表明:应变速率和变形温度是影响变形激活能的关键参数;当变形温度一定时,流变应力和应变速率之间呈线性关系,合金的变形激活能在523~573K时变化不大,而在大于573K时增大较快,可用包含Arrheniues项的参数Z描述AZ31镁合金热压缩变形的流变应力行为。  相似文献   

6.
42CrMo钢的热压缩流变应力行为   总被引:8,自引:2,他引:6  
为实现42CrMo钢锻造的数值模拟与合理制定其热成形工艺参数,采用Gleeble-1500热模拟实验机研究工业用42CrMo钢在变形温度为850~1150℃和应变速率为0.01~50s^-1条件下的流变应力行为。通过线性回归分析确定42CrMo钢的应变硬化指数以及形变表观激活能,获得42CrMo钢高温条件下的流变应力本构方程,并验证该流变应力本构方程的准确性。研究结果表明:42CrMo钢在热压缩变形过程中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度的升高而降低;流变应力的预测值与实验值较吻合,而且预测的最大相对误差仅为4.54%。  相似文献   

7.
FGH95合金的高温氧化行为   总被引:2,自引:0,他引:2  
通过静态增重实验、X射线物相分析、扫描电镜形貌观察及微区成分分析等手段,系统研究了FGH95合金在不同温度下的高温氧化行为及高温氧化动力学规律.结果表明:FGH95合金在800~1 000 ℃具有较好的抗氧化性能,其氧化动力学曲线基本符合抛物线规律;在1 100 ℃,氧化较为严重,其氧化动力学曲线由两段抛物线组成.氧化层主要由Cr2O3和TiO2组成,在1 100 ℃高温氧化后有少量的NiCr2O4生成.  相似文献   

8.
通过Gleeble 2000上的热模拟压缩实验,分析了Q235低碳钢在不同热加工参数下的动态组织演化特征.结果表明:应变速率和温度对Q235钢的奥氏体形变特征影响强烈.在相同变形温度下,应变速率的提高可以明显推迟动态再结晶的发生;应变速率较低时,降低温度同样可以延迟动态再结晶的发生.利用定量金相技术及线性、非线性拟合算法,建立了Q235钢热变形过程的唯像本构关系及组织演化动力学模型,并将其应用于Autoforge 3.1有限元软件平台.压缩过程有限元模拟分析表明,分别采用Arrhenius双曲正弦方程描述Q235钢的唯像本构关系及Yada模型表征Q235钢变形过程的平均晶粒尺寸,可以满足预测精度,与实际变形过程基本吻合.  相似文献   

9.
在Couette型同轴圆桶流变仪上,采用滞后环工艺研究了半固态AlSi6Mg2铝合金浆料的触变行为.实验结果表明:半固态AlSi6Mg2铝合金浆料在循环剪切变形下,静置时间越长、剪切速率到达最大值所用时间越短、固相分数越大、最大剪切速率越大,则合金浆料τ-γ,滞后环所包围区域面积越大,合金浆料的触变性越强.  相似文献   

10.
Ti45Al8Nb2Mn0.2B铸造合金高温形变行为   总被引:2,自引:0,他引:2  
Ti45Al8Nb2Mn0.2B铸造合金在900~1200℃温度范围,1~10-3/s应变速率条件下进行压缩实验,研究其变形特点以及组织变化.结果发现,形变过程中合金的真应力-真应变曲线上存在一个应力峰值,随后流变应力随着应变量的增加逐渐下降并趋于稳态流变.降低温度和提高应变速率都使合金的应力峰值增加.在实验温度范围内合金的应变速率敏感系数为0.10~0.24;在高温形变过程中发生动态再结晶,合金的组织得到明显细化.再结晶晶粒尺寸随温度的降低和应变速率的增加而减小,也就是随Zener-Hollomonc参数的增加而减小;升高形变温度和降低应变速率均促进再结晶过程.  相似文献   

11.
新型Al-Mg-Si-Cu合金热压缩流变应力研究   总被引:1,自引:0,他引:1  
在Gleeble 1500热模拟机上对一种新型Al-Mg-Si-Cu合金热压缩流变应力行为进行了研究,应变速率为 0.005~5 s-1、变形温度为350~550 ℃.结果表明:在较小应变(<0.15)出现一峰值后流变应力随应变的增加有所降低,表现出较明显的动态软化;在实验范围内,流变应力值随着应变速率减少和变形温度升高而降低,可用Zener-Hollomon参数的幂指数关系描述合金的流变应力行为,其变形激活能Q为236 kJ/mol.图5,参11.  相似文献   

12.
6063铝合金高温流变本构方程   总被引:22,自引:0,他引:22  
采用圆柱试样在G1eeb1e—1500热模拟机上进行高温等温压缩实验,研究了6063铝合金在高温塑性变形过程中流变应力的变化规律.结果表明:应变速率和变形温度的变化强烈地影响6063铝合金流变应力,流变应力随变形温度升高而降低,随应变速率提高而增大,在高应变速率下出现明显的动态软化.  相似文献   

13.
在变形温度650~950 ℃,应变速率0.001~0.1 s -1的条件下,采用Gleeble-1500热模拟实验机对Ag-Pd-Cu-X合金进行了热模拟压缩实验,分析了合金微观组织及流变应力变化规律,建立了合金的热变形本构方程。结果表明:当变形温度由650 ℃升高到750 ℃以后,合金的热变形软化机制由动态回复为主转向以动态再结晶为主,流变应力呈现出明显的逐渐降低趋势。合金在变形温度750~950 ℃的热变形激活能为210.369 kJ/mol。利用所建立的本构方程计算得到的预测值与实验值吻合良好,证明了所建立本构方程的正确性。  相似文献   

14.
采用圆柱试样在Gleeble-1500热模拟机上对FVS0812耐热铝合金进行等温热压缩实验.变形温度为300~500℃;应变速率为0.001~1s-1.实验结果表明:喷射沉积-挤压态致密FVS0812铝合金材料的真应力-真应变曲线表现为:变形初期流变应力随应变量的增加而迅速增加,达到峰值后,真应力呈下降趋势.可以用Sellars和Tegart提出的双曲正弦形式的本构方程来描述FVS0812铝合金的高温压缩变形时的流变应力行为,其变形激活能Q为368.906 kJ/mol.图8,表1,参6.  相似文献   

15.
在Gleeble-1500热模拟试验机上对Al-0.80Mg-0.63Si-0.61Cu合金进行等温热压缩试验,研究其在高温压缩变形中的流变应力行为.研究结果表明:流变应力随应变速率的增大而增大,随变形温度的升高而降低,在高应变速率和较低温度条件下,应力出现锯齿波动,呈不连续再结晶特征;该铝合金热压缩变形的流变应力行为可用包含Arrhenius项的Zener-Hollomon参数来描述,其变形激活能为176.54 kJ/mol.  相似文献   

16.
Mg-Al-Zn系合金高温压缩流变应力研究   总被引:1,自引:0,他引:1  
在Gleeble-1500热模拟机上对Mg-Al-Zn系合金(AZ31和AZ80)的高温压缩流变应力行为进行研究.结果表明:材料真应力-应变曲线呈现动态再结晶特征.合金元素含量差异引起材料高温变形行为不同.AZ31合金流变应力行为受变形温度影响:变形温度低于350℃时呈幂指数关系;高于350℃时呈指数关系,应力指数n为7,热变形激活能Q为112 kJ/mol.AZ80合金高温流变应力符合幂指数关系,应力指数n为6,热变形激活能Q为220 kJ/mol.  相似文献   

17.
Al-Fe-V-Si合金高温变形热模拟   总被引:1,自引:1,他引:0  
采用Gleebe 1 5 0 0热模拟机 ,对喷射沉积Al Fe V Si合金在温度为 35 0~ 5 5 0℃、应变速率为1× 1 0 - 4 ~ 1× 1 0 - 2 s- 1 、最大变形程度为 5 0 %的条件下 ,进行高温压缩热模拟实验研究 .在实验基础上 ,分析了合金高温变形时的变形激活能和应力指数以及流变应力与应变速率、变形温度之间的关系 ,为确定该合金的挤压温度提供了实验依据 .实验结果表明 ,该材料具有较高的应力指数和变形激活能 ,而且在 480℃下具有较低的变形抗力 ,又能保证挤压后产品有较好的力学性能 ,因此 ,可以考虑将挤压温度定在 480℃左右为宜  相似文献   

18.
在变形温度为900~1060℃和应变速率为0.001~10s-1条件下,对Ti62421s合金进行变形量为60%的热压缩变形,以研究Ti62421s合金的热压缩流变应力行为.研究温度与应变速率对Ti62421s热变形流变应力的影响,建立Ti62421s合金热变形流变应力的本构方程和加工图.研究结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳:当在高应变速率(10s-1)下变形时,出现不连续屈服现象:应力峰值随应变速率的增大而增大,随温度的升高而呈减小趋势:合金最佳变形工艺参数为:温度θ=980℃,应变速率(ε)=0.01~0.1s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号