首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The absorption spectrum of the all-trans retinal chromophore in the protonated Schiff-base form, that is, the biologically relevant form, has been measured in vacuo, and a maximum is found at 610 nm. The absorption of retinal proteins has hitherto been compared to that of protonated retinal in methanol, where the absorption maximum is at 440 nm. In contrast, the new gas-phase absorption data constitute a well-defined reference for spectral tuning in rhodopsins in an environment devoid of charges and dipoles. They replace the misleading comparison with absorption properties in solvents and lay the basis for reconsidering the molecular mechanisms of color tuning in the large family of retinal proteins. Indeed, our measurement directly shows that protein environments in rhodopsins are blue- rather than red shifting the absorption. The absorption of a retinal model chromophore with a neutral Schiff base is also studied. The data explain the significant blue shift that occurs when metharhodopsin I becomes deprotonated as well as the purple-to-blue transition of bacteriorhodopsin upon acidification.  相似文献   

2.
The visual pigment rhodopsin (bovine) is a 40 kDa protein consisting of 348 amino acids, and is a prototypical member of the subfamily A of G protein-coupled receptors (GPCRs). This remarkably efficient light-activated protein (quantum yield = 0.67) binds the chromophore 11-cis-retinal covalently by attachment to Lys296 through a protonated Schiff base. The 11-cis geometry of the retinylidene chromophore keeps the partially active opsin protein locked in its inactive state (inverse agonist). Several retinal analogs with defined configurations and stereochemistry have been incorporated into the apoprotein to give rhodopsin analogs. These incorporation results along with the spectroscopic properties of the rhodopsin analogs clarify the mode of entry of the chromophore into the apoprotein and the biologically relevant conformation of the chromophore in the rhodopsin binding site. In addition, difference UV, CD, and photoaffinity labeling studies with a 3-diazo-4-oxo analog of 11-cis-retinal have been used to chart the movement of the retinylidene chromophore through the various intermediate stages of visual transduction.  相似文献   

3.
Xanthorhodopsin is a light-driven proton pump in the extremely halophilic bacterium Salinibacter ruber. Its unique feature is that besides retinal it has a carotenoid, salinixanthin, with a light harvesting function. Tight and specific binding of the carotenoid antenna is controlled by binding of the retinal. Addition of all-trans retinal to xanthorhodopsin bleached with hydroxylamine restores not only the retinal chromophore absorption band, but causes sharpening of the salinixanthin bands reflecting its rigid binding by the protein. In this report we examine the correlation of the changes in the two chromophores during bleaching and reconstitution with native all-trans retinal, artificial retinal analogs and retinol. Bleaching and reconstitution both appear to be multistage processes. The carotenoid absorption changes during bleaching occurred not only upon hydrolysis of the Schiff base but continued while the retinal was leaving its binding site. In the case of reconstitution, the 13-desmethyl analog formed the protonated Schiff base slower than retinal, and provided the opportunity to observe changes in carotenoid binding at various stages. The characteristic sharpening of the carotenoid bands, indicative of its reduced conformational heterogeneity in the binding site, occurs when the retinal occupies the binding site but the covalent bond to Lys-240 via a Schiff base is not yet formed. This is confirmed by the results for retinol reconstitution, where the Schiff base does not form but the carotenoid exhibits its characteristic spectral change from the binding.  相似文献   

4.
The visual pigment rhodopsin is a seven-transmembrane (7-TM) G protein-coupled receptor (GPCR). Activation of rhodopsin involves two pH-dependent steps: proton uptake at a conserved cytoplasmic motif between TM helices 3 and 6, and disruption of a salt bridge between a protonated Schiff base (PSB) and its carboxylate counterion in the transmembrane core of the receptor. Formation of an artificial pigment with a retinal chromophore fluorinated at C14 decreases the intrinsic pKa of the PSB and thereby destabilizes this salt bridge. Using Fourier transform infrared difference and UV-visible spectroscopy, we characterized the pH-dependent equilibrium between the active photoproduct Meta II and its inactive precursor, Meta I, in the 14-fluoro (14-F) analogue pigment. The 14-F chromophore decreases the enthalpy change of the Meta I-to-Meta II transition and shifts the Meta I/Meta II equilibrium toward Meta II. Combining C14 fluorination with deletion of the retinal beta-ionone ring to form a 14-F acyclic artificial pigment uncouples disruption of the Schiff base salt bridge from transition to Meta II and in particular from the cytoplasmic proton uptake reaction, as confirmed by combining the 14-F acyclic chromophore with the E134Q mutant. The 14-F acyclic analogue formed a stable Meta I state with a deprotonated Schiff base and an at least partially protonated protein counterion. The combination of retinal modification and site-directed mutagenesis reveals that disruption of the protonated Schiff base salt bridge is the most important step thermodynamically in the transition from Meta I to Meta II. This finding is particularly important since deprotonation of the retinal PSB is known to precede the transition to the active state in rhodopsin activation and is consistent with models of agonist-dependent activation of other GPCRs.  相似文献   

5.
Retinal Schiff bases serve as chromophores in many photoactive proteins that carry out functions such as signalling and light-induced ion translocation. The retinal Schiff base can be found as neutral or protonated, as all-trans, 11-cis or 13-cis isomers and can adopt different conformations in the protein binding pocket. Here we present the synthesis and characterisation of isomeric retinylidene iminium salts as mimics blocked towards isomerisation at the C11 position and conformationally restrained. The intrinsic chromophoric properties are elucidated by gas phase absorption studies. These studies reveal a small blue-shift in the S0-->S1 absorption for the 11-locked derivative as compared to the unlocked one. The gas phase absorption spectra of all the cationic mimics so far investigated show almost no absorption in the blue region. This observation stresses the importance of protein interactions for colour tuning, which allows the human eye to perceive blue light.  相似文献   

6.
Abstract— The difference (in cm−1) in absorption maxima between the protonated Schiff base of retinals and the pigment derived therefrom has been defined as the opsin shift. It represents the influence of the opsin binding site on the chromophore. The analysis of the opsin shifts of a series of dihydrobacteriorhodopsins has led to the external point-charge model, which in addition to a counter anion near the Schiff base ammonium, carries another negative charge in the vicinity of the β-ionone ring. This is in striking contrast to the external point-charge model proposed earlier for the bovine visual pigment. The absorption maxima of rhodopsins formed from bromo- and phenyl retinals support the two models. A retinal carrying a photoaffinity label has yielded a nonbleachable bacteriorhodopsin.  相似文献   

7.
Rhodopsin is a member of the family of G-protein-coupled receptors (GPCRs), and is an excellent molecular switch for converting light signals into electrical response of the rod photoreceptor cells. Light initiates cis-trans isomerization of the retinal chromophore of rhodopsin and leads to the formation of several thermolabile intermediates during the bleaching process. Recent investigations have identified spectrally distinguishable two intermediate states that can interact with the retinal G-protein, transducin, and have elucidated the functional sharing of these intermediates. The initial contact with GDP-bound G-protein occurs in the meta-Ib intermediate state, which has a protonated Schiff base as its chromophore. The meta-Ib intermediate in the complex with the G-protein converts to the meta-II intermediate with releasing GDP from the alpha-subunit of the G protein. Meta-II has a de-protonated Schiff base chromophore and induces binding of GTP to the alpha-subunit of the G-protein. Thus, the GDP-GTP exchange reaction, namely G-protein activation, by rhodopsin proceeds through at least two steps, with conformational changes in both rhodopsin and the G-protein.  相似文献   

8.
The first proton transport step following photon absorption in bacteriorhodopsin is from the 13-cis retinal Schiff base to Asp85. Configurational and energetic determinants of this step are investigated here by performing quantum mechanical/molecular mechanical minimum-energy reaction-path calculations. The results suggest that retinal can pump protons when in the 13-cis, 15-anti conformation but not when 13-cis, 15-syn. Decomposition of the proton transfer energy profiles for various possible pathways reveals a conflict between the effect of the intrinsic proton affinities of the Schiff base and Asp85, which favors the neutral, product state (i.e., with Asp85 protonated), with the mainly electrostatic interaction between the protein environment with the reacting partners, which favors the ion pair reactant state (i.e., with retinal protonated). The rate-limiting proton-transfer barrier depends both on the relative orientations of the proton donor and acceptor groups and on the pathway followed by the proton; depending on these factors, the barrier may arise from breaking and forming of hydrogen bonds involving the Schiff base, Asp85, Asp212, and water w402, and from nonbonded interactions involving protein groups that respond to the charge rearrangements in the Schiff base region.  相似文献   

9.
Molecular ion calorimetry: A technique for measuring the heat capacity of an isolated gas-phase chromophore is presented and applied to the retinal protonated Schiff base. The potential use of this technique for studying barriers for internal rotations is discussed.  相似文献   

10.
The factors that red shift the absorption maximum of the retinal Schiff base chromophore in the M412 intermediate of bacteriorhodopsin photocycle relative to absorption in solution were investigated using a series of artificial pigments and studies of model compounds in solution. The artificial pigments derived from retinal analogs that perturb chromophore-protein interactions in the vicinity of the ring moiety indicate that a considerable part of the red shift may originate from interactions in the vicinity of the Schiff base linkage. Studies with model compounds revealed that hydrogen bonding to the Schiff base moiety can significantly red shift the absorption maximum. Furthermore, it was demonstrated that although s-trans ring-chain planarity prevails in the M412 intermediate it does not contribute significantly (only ca 750 cm−1) to the opsin shift observed in M412. It is suggested that in M412, the Schiff base linkage is hydrogen bonded to bound water and/or protein residues inducing a considerable red shift in the absorption maximum of the retinal chromophore.  相似文献   

11.
Detergent solubilized bacteriorhodopsin (BR) proteins which contain alterations made by site-directed mutagenesis (Asp-96----Asn, D96N; Asp-85----Asn, D85N; and Arg-82----Gln, R82Q) have been studied with resonance Raman spectroscopy. Raman spectra of the light-adapted (BRLA) and M species in D96N are identical to those of native BR, indicating that this residue is not located near the chromophore. The BRLA states of D85N and especially R82Q contain more of the 13-cis, C = N syn (BR555) species under ambient illumination compared to solubilized native BR. Replacement of Asp-85 with Asn causes a 25 nm red-shift of the absorption maximum and a frequency decrease in both the ethylenic (-7 cm-1) and the Schiff base C = NH+ (-3 cm-1) stretching modes of BRLA. These changes indicate that Asp-85 is located close to the protonated retinal Schiff base. The BRLA spectrum of R82Q exhibits a slight perturbation of the C = NH+ band, but its M spectrum is unperturbed. The Raman spectra and the absorption properties of D85N and R82Q suggest that the protein counterion environment involves the residues Asp-85-, Arg-82+ and presumably Asp-212-. These data are consistent with a model where the strength of the protein-chromophore interaction and hence the absorption maximum depends on the overall charge of the Schiff base counterion environment.  相似文献   

12.
In a previous study of ab initio dynamics, the proton transfer in bacteriorhodopsin from protonated asp96 in the cytoplasmic region toward the deprotonated Schiff base was investigated. A quantum mechanics/molecular mechanics model was constructed from the X-ray structure of bacteriorhodopsin E204Q mutant. In this model, asp96, asp85, and thr89 as well as most of the retinal chromophore and the Schiff base link of lys216 were treated quantum mechanically while the rest of the atoms were treated molecular mechanically. A channel was found in the X-ray structure allowing a water chain to form between the asp96 and Schiff base. In the present study, a chain of four waters from asp96 to the Schiff base N coupled with one branching water supports proton transfer as a concerted event in about 3.5 ps. With both a neutral asp85 and a branched water, the dynamics is now found to be more complicated than observed in the initial study for the transition from the photocycle late M state to the N state. Proton transfer is also observed from the Schiff base back to asp96 demonstrating that there is no effective barrier to proton transfer larger than kT in a strong H-bonded network. The binding of the branched water to the four water chains can dynamically hinder the proton transfer.  相似文献   

13.
Light absorption by the visual pigment rhodopsin leads to vision via a complex signal transduction pathway that is initiated by the ultrafast and highly efficient photoreaction of its chromophore, the retinal protonated Schiff base (RPSB). Here, we investigate this reaction in real time by means of unrestrained molecular dynamics simulations of the protein in a membrane mimetic environment, treating the chromophore at the density functional theory level. We demonstrate that a highly strained all-trans RPSB is formed starting from the 11-cis configuration (dark state) within approximately 100 fs by a minor rearrangement of the nuclei under preservation of the saltbridge with Glu113 and virtually no deformation of the binding pocket. Hence, the initial step of vision can be understood as the compression of a molecular spring by a minor change of the nuclear coordinates. This spring can then release its strain by altering the protein environment.  相似文献   

14.
Pyranine (8-hydroxyl-1,3,6-pyrene-trisulfonate) was used as a pH-probe to test whether there is a light-induced proton release to the bulk phase during the photochemical reaction cycle of sensory rhodopsin-I (SR-I). We conclude that the retinylidene Schiff-base proton is retained by SR-I-containing envelope vesicles during the SR-I photocycle under the conditions described here. Bacteriorhodopsin containing vesicles were used as a control to show that light-induced proton release can be observed under identical data acquisition parameters as those used for SR-I-containing vesicles. In addition, the effects of extravesicular pH on the absorption maximum (lambda max) and the SR-I photocycle were studied. SR-I properties are insensitive to pH in the range approximately 3 to approximately 8 with lambda max remaining at 587 nm. The lambda max shifts to 565 nm below pH 3.0 and to 552 nm at pH 10.8 with an apparent pKa of 8.5. Flash-induced absorbance changes of SR-I are described under neutral, alkaline and acidic conditions. The neutral, alkaline and acid SR-I forms each undergo similar photoreactions producing long-lived (> 500 ms decay half-time) blue-shifted intermediates. The UV/near-UV absorption of the photoproducts from neutral and alkaline SR-I indicate a deprotonated Schiff base, whereas acid SR-I produces a species with lambda max > 460 nm indicative of a protonated Schiff base.  相似文献   

15.
The effects of the amino acid side chains of the binding pocket of bacteriorhodopsin (bR) and of a water molecule on the structure of the retinal Schiff base have been studied using Becke3LYP/6-31G* level of density functional theory. A model protonated Schiff base structure including six conjugated double bonds and methyl substituents was optimized in the presence of several amino acid side chains and of a water molecule, separately. The Schiff base structure was also calculated in the form of a neutral species. At each optimized complex geometry the atomic charges of the model Schiff base were calculated using Mulliken population analysis. In agreement with previously proposed counterion(s) of the protonated retinal Schiff base in bR, the results show that Asp85 and Asp212, which are present in the form of negatively charged groups, have significantly large effects on the structure and electronic configuration of both unprotonated and protonated model Schiff bases. The presence of a water molecule in the vicinity of the Schiff base demonstrates significant effects which are comparable to those of aspartate groups. Other side chains studied did not show any significant effect in this direction. Apart from the aspartate groups and the water molecule, in none of the other complexes studied are the atomic charges and the bond alternation of the model Schiff base significantly influenced by the presence of the neighboring amino acids. Received: 24 March 1998 / Accepted: 3 September 1998 / Published online: 10 December 1998  相似文献   

16.
The photoreaction of vacuum-dried rhodopsin was monitored by UV-visible absorption spectroscopy. The results indicate that in dry rhodopsin, isorhodopsin and lumirhodopsin a protonation equilibrium exists between the protonated and the non-protonated Schiff base. On hydration the water stabilizes the protonated forms. In metarhodopsin-I the protein itself is able to stabilize the protonated Schiff base. The direct involvement of water in the retinal binding site was demonstrated by measuring the rhodopsin-bathorhodopsin FTIR difference spectra of rhodopsin hydrated with H2O and H2(18)O. The results are discussed with respect to the problem of charge stabilization and energy storage.  相似文献   

17.
Abstract— The retinylidene Schiff base derivative of seven lysine containing peptides have been prepared in order to investigate solvent and neighboring group effects, on the absorption maximum of the protonated Schiff base chromophore. The peptides studied are Boc-Aib-Lys-Aib-OMe ( 1 ), Boc-Ala-Aib-Lys-OMe ( 2 ), Boc-Ala-Aib-Lys-Aib-OMe ( 3 ), Boc-Aib-Asp-Aib-Aib-Lys-Aib-OMe ( 4 ), Boc-Aib-Asp-Aib-Ala-Aib-Lys-Aib-OMe ( 5 ), Boc-Lys-Val-Gly-Phe-OMe ( 6 ) and Boc-Ser-Ala-Lys-Val-Gly-Phe-OMe ( 7 ). In all cases protonation shifts the absorption maxima to the red by 3150–8450 cm-1. For peptides 1–3 the protonation shifts are significantly larger in nonhydrogen bonding solvents like CHCl3 or CH2Cl2 as compared to hydrogen bonding solvents like CH3OH. The presence of a proximal Asp residue in 4 and 5 results in pronounced blue shift of the absorption maximum of the protonated Schiff base in CHCl3, relative to peptides lacking this residue. Peptides 6 and 7 represent small segments of the bacteriorhodopsin sequence in the vicinity of Lys-216. The presence of Ser reduces the magnitude of the protonation shift.  相似文献   

18.
Ring-fused retinal analogs were designed to examine the hula-twist mode of the photoisomerization of the 9-cis retinylidene chromophore. Two 9-cis retinal analogs, the C11-C13 five-membered ring-fused and the C12-C14 five-membered ring-fused retinal derivatives, formed the pigments with opsin. The C11-C13 ring-fused analog was isomerized to a relaxed all-trans chromophore (lambda(max) > 400 nm) at even -269 degrees C and the Schiff base was kept protonated at 0 degrees C. The C12-C14 ring-fused analog was converted photochemically to a bathorhodopsin-like chromophore (lambda(max) = 583 nm) at -196 degrees C, which was further converted to the deprotonated Schiff base at 0 degrees C. The model-building study suggested that the analogs do not form pigments in the retinal-binding site of rhodopsin but form pigments with opsin structures, which have larger binding space generated by the movement of transmembrane helices. The molecular dynamics simulation of the isomerization of the analog chromophores provided a twisted C11-C12 double bond for the C12-C14 ring-fused analog and all relaxed double bonds with a highly twisted C10-C11 bond for the C11-C13 ring-fused analog. The structural model of the C11-C13 ring-fused analog chromophore showed a characteristic flip of the cyclohexenyl moiety toward transmembrane segments 3 and 4. The structural models suggested that hula twist is a primary process for the photoisomerization of the analog chromophores.  相似文献   

19.
Controlling the spectral tunability and isomerization activity is currently one of the hot topics in the design of photoreversible molecular switches for application in optoelectronic devices. The present work demonstrates how to manipulate the absorption of the retinal protonated Schiff base (rPSB) chromophore over the entire visible range by targeted functionalization of the retinal backbone. Moreover, a correlation between the vertical excitation energy and the profile of the potential energy surface of the bright excited state responsible for the photoreactivity of rPSB is established. This correlation was exploited to rank the functionalized rPSBs into different classes with characteristic photoisomerization activity. Eventually, the synergic effects of functionalization and of external electric fields in the range of a few MV cm−1 were applied to achieve reversable and regioselective control of the photoisomerization propensity of selected rPBS derivatives.  相似文献   

20.
It is known that the absorption maximum of halorhodopsin is red shifted by 10 nm with the uptake of a chloride ion Cl(-). According to the X-ray structure, the ion is located at the position of the counterion of the chromophore, protonated retinal Schiff base. Thus, the direction of the observed spectral change is opposite to that expected from the pi-electron redistribution (an increase in the bond alternation) induced by the counterion. The physical origin of this abnormal shift is never explained in terms of any simple chemical analogues. We successfully explain this phenomenon by a QM/MM type of excitation energy calculation. The three-dimensional structure of the protein is explicitly taken into account using the X-ray structure. We reveal that the electronic polarization of the protein environment plays an essential role in tuning the absorption maximum of halorhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号