首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Danos O  Svinartchouk F 《Electrophoresis》2006,27(17):3475-3479
2-DE is an important tool in proteomics research. However, intrinsic gel-to-gel variability of 2-DE often masks the biological differences between the samples and compromises quantitative comparison of protein expression levels. Here, we describe a modification of 2-DE that results in improved matching and quantification of proteins. This was accomplished by performing IEF of two samples in two IPG strips separated by a dialysis membrane. After IEF running, the strips were separated and the SDS-PAGE dimension was accomplished on two individual gels. After gel staining with CBB, ImageMaster 2D Platinum software (Amersham) was used for spot detection and quantification. Analysis of protein extracts from C2C12 myoblasts by this method resulted in 99% spot-matching efficiency and CV in stain intensity (% volume) was less than 0.5 for 98% of spots. We conclude that this technique, called dialysis-assisted gel electrophoresis, gives superior spot matching and quantitative reproducibility compared to IEF conducted on separate strips.  相似文献   

2.
The characteristics of protein detection and quantitation with SYPRO Ruby protein gel stain in one- and two-dimensional polyacrylamide gels were evaluated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses of three different purified recombinant proteins showed that the limits of detection were comparable to the limits of detection with ammoniacal silver staining and were protein-specific, ranging from 0.5 to 5 ng. The linearity of the relationship between protein level and SYPRO Ruby staining intensity also depended on the individual protein, with observed linear dynamic ranges of 200-, 500-, and, 1000-fold for proteins analyzed by SDS-PAGE. SYPRO Ruby protein gel stain was also evaluated in two-dimensional electrophoretic (2-DE) analysis of Escherichia coli proteins. The experiment involved analysis of replicates of the same sample as well as dilution of the sample from 0.5 to 50 nug total protein across gels. In addition to validating the 2-DE system itself, the experiment was used to evaluate three different image analysis programs: Z3 (Compugen), Progenesis (Nonlinear Dynamics), and PDQuest (Bio-Rad). In each program, we analyzed the 2-DE images with respect to sensitivity and reproducibility of overall protein spot detection, as well as linearity of response for 20 representative proteins of different molecular weights and pI. Across all three programs, coefficients of variation (CV) in total number of spots detected among replicate gels ranged from 4 to 11%. For the 20 representative proteins, spot quantitation was also comparable with CVs for gel-to-gel reproducibility ranging from 3 to 33%. Using Progenesis and PDQuest, a 1000-fold linear dynamic range of SYPRO Ruby was demonstrated with a single known protein. These two programs were more suitable than Z3 for examining individual protein spot quantity across a series of gels and gave comparable results.  相似文献   

3.
Experimental variability in 2-DE is well documented, but little attention has been paid to variability arising from postexperimental quantitative analyses using various 2-DE software packages. The performance of two 2-DE analysis software programs, Phoretix 2D Expression v2004 (Expression) and PDQuest 7.2 (PDQuest), was evaluated in this study. All available background subtraction and smoothing algorithms were tested using both data generated from one single 2-DE gel image, thus excluding experimental variance, and with authentic sets of replicate gels (n = 5). A slight shift of the image boundaries (the "cropping area") caused both programs to induce variance in protein spot quantification of otherwise identical gel images. The resulting variance for PDQuest (CV(mean) = 8%) was approximately twice that for Expression (CV(mean) = 4%). In authentic sets of replicate 2-DE gels (n = 5), the experimental variance confounded the software-induced variance to some extent. However, Expression still outperformed PDQuest, which exhibited software-induced variance as high as 25% of the total observed variance. Surprisingly, the complete omission of background subtraction algorithms resulted in the least amount of software-based variance. These data indicate that 2-DE gel analysis software constitutes a significant source of the variance observed in quantitative proteomics, and that the use of background subtraction algorithms can further increase the variance.  相似文献   

4.
The quantitative attributes of human leukocyte proteins detected by silver staining two-dimensional electrophoresis (2-DE) gels were studied by using computer-assisted data analysis. Experiments included (a) analysis of replicate patterns of the same sample, (b) analysis of different dilutions of the same sample, and (c) analysis of samples from different individuals. Over 200 proteins were observed to have coefficients of variation (CV) less than or equal to 15% when data from replicate patterns were analyzed. In contrast, 8 proteins had CV values of less than or equal to 15% when data from different samples were analyzed. The dilution experiment showed that a majority of the proteins detected with some consistency (i.e., observed in at least 80% of the patterns) have a linear relationship between the amount of protein loaded onto a 2-DE gel and the spot volume in the final 2-DE pattern. The slope of the curves and the deviation from linearity were found to be quite protein-specific. These results indicate that optimization of sample purity and minimization of staining protocol variables are required to limit the background quantitative variability between and within 2-DE runs to a level that will allow detection of quantitative changes indicative of biological responses.  相似文献   

5.
2-DE is a powerful technique to discriminate post-translationally modified protein isoforms. However, all steps of 2-DE preparation and gel-staining may introduce unwanted artefacts, including inconsistent variation of background intensity over the entire 2-DE gel image. Background intensity variations limit the accuracy of gel orientation, overlay alignment and spot detection methods. We present a compact and efficient denoising algorithm that adaptively enhances the image contrast and then, through thresholding and median filtering, removes the gray-scale range covering the background. Applicability of the algorithm is demonstrated on immunoblots, isotope-labeled gels, and protein-stained gels. Validation is performed in contexts of (i) automatic gel orientation based on Hough transformation, (ii) overlay alignment based on cross correlation and (iii) spot detection. In gel stains with low background variability, e.g. Sypro Ruby, denoising will lower the spot detection sensitivity. In gel regions with high background levels denoising enhances spot detection. We propose that the denoising algorithm prepares images with high background for further automatic analysis, without requiring manual input on a gel-to-gel basis.  相似文献   

6.
Two-dimensional gel electrophoresis (2-DE) facilitates the separation of thousands of proteins from highly complex protein mixtures and has become a central method in proteomics in recent years. In the present study, we examined the technical variability of large 2-DE gels with respect to sample preparation, electrophoresis procedure, data acquisition, and biological variation by analyzing a disease (Huntington's disease) and control state with a commercially available software package, PROTEOMWEAVER trade mark. Scatter plots and correlation coefficients were obtained to quantify both technical and biological variation. Even 2-DE gels run separately in both dimensions yielded correlation coefficients around 0.88 and deviations from the mean close to 20% for low-intensity spots. This indicates a high technical reproducibility of the 2-DE procedure developed in our laboratory. Variability within a biological condition was low and comparable to technical variation (at least 0.87). Two-dimensional (2-D) gels obtained from samples of different biological conditions (health vs. disease) achieved a variability similar to intracondition and technical variability. These findings highlight the importance of multiple gel and spot-by-spot comparisons to identify biological significant changes. Minor errors introduced by technical and biological variation allow a comparison of all gels within a study which facilitates the tackling of complex biological problems.  相似文献   

7.
The use of cup-loading for sample application has become widely used in two-dimensional electrophoresis (2-DE) for resolution of basic proteins, but no side-by-side quantitative study has been published which compares cup-loading with the alternative passive and active rehydration methods to fully promote one type of loading method over another. Replicate 2-D gels from each loading method were quantitatively evaluated for gel-to-gel reproducibility using IPG 6-11 strips and semipreparative protein loads (300 microg). Gels were stained with SYPRO Ruby and analyzed with PDQuest. An inexpensive home-made assembly for cup-loading was used with the Protean IEF Cell for separation of whole cell extracts from the archaeon, Sulfolobus solfataricus. Cup-loading was determined to be far superior for IPG 6-11 separations than active or passive rehydration methods. Cup-loading consistently produced the greatest number of detectable spots, the best spot matching efficiency (56%), lowest spot quantity variations (28% coefficient of variation, CV), and the best-looking gels qualitatively. The least satisfactory results were obtained with active rehydration, followed closely by passive rehydration in off-line tubes. Passive rehydration experiments, performed using an on-line isoelectric focusing (IEF) tray, produced comparable spot numbers to cup-loading (84%), with 55% of the spots having higher intensity but 10% more spot quantity variance than cup-loading.  相似文献   

8.
Despite its excellent resolving power, 2-DE is of limited use when analyzing cellular proteomes, especially in differential expression studies. Frequently, fewer than 2000 protein spots are detected on a single 2-D gel (a fraction of the total proteome) regardless of the gel platform, sample, or detection method used. This is due to the vast number of proteins expressed and their equally vast dynamic range. To exploit 2-DE unique ability as both an analytical and a preparative tool, the significant sample prefractionation is necessary. We have used solution isoelectric focusing (sIEF) via the ZOOM IEF Fractionator (Invitrogen) to generate sample fractions from complex bacterial lysates, followed by parallel 2-DE, using narrow-range IPG strips that bracket the sIEF fractions. The net result of this process is a significant enrichment of the bacterial proteome resolved on multiple 2-D gels. After prefractionation, we detected 5525 spots, an approximate 3.5-fold increase over the 1577 spots detected in an unfractionated gel. We concluded that sIEF is an effective means of prefractionation to increase depth of field and improve the analysis of low-abundance proteins.  相似文献   

9.
Zhou S  Mann CJ  Dunn MJ  Preedy VR  Emery PW 《Electrophoresis》2006,27(5-6):1147-1153
We report a method to quantify the specific radioactivity of proteins that have been separated by 2-DE. Gels are stained with SyproRuby, and protein spots are excised. The SyproRuby dye is extracted from each spot using DMSO, and the fluorescence is quantified automatically using a plate reader. The extracted gel piece is then dissolved in hydrogen peroxide and radioactivity is quantified by liquid scintillation counting. Gentle agitation with DMSO for 24 h was found to extract all the SyproRuby dye from gel fragments. The fluorescence of the extract was linearly related to the amount of BSA loaded onto a series of 1-D gels. When rat muscle samples were run on 2-DE gels, the fluorescence extracted from 54 protein spots showed a good correlation (r = 0.79, p < 0.001) with the corresponding spot intensity measured by conventional scanning and image analysis. DMSO extraction was found not to affect the amount of radioactive protein left in the gel. When a series of BSA solutions of known specific radioactivity were run on 2-DE gels, the specific radioactivity measured by the new method showed a good correlation (r = 0.98, p < 0.01, n = 5) with the specific radioactivity measured directly before loading. Reproducibility of the method was measured in a series of 2-DE gels containing proteins from the livers of rats and mice that had been injected with [35S]methionine. Variability tended to increase when the amount of radioactivity in the protein spot was low, but for samples containing at least 10 dpm above background the CV was around 30%, which is comparable to that obtained when measuring protein expression by conventional image analysis of SyproRuby-stained 2-DE gels. Similar results were obtained whether spots were excised manually or using a spot excision robot. This method offers a high-throughput, cost-effective and reliable method of quantifying the specific radioactivity of proteins from metabolic labelling experiments carried out in vivo, so long as sufficient quantities of radioactive tracer are used.  相似文献   

10.
We describe a miniaturized instrument capable of performing 2-DE. Our miniaturized device is able to perform IEF and polyacrylamide slab gel electrophoresis (PASGE) in the same unit. It consists of a compartment for a first-dimensional IEF gel, which is connected to a second-dimensional PASGE gel. The focused samples are automatically transferred from the IEF gel to the PASGE gel by electromigration. Our preliminary experiments show that the device is able to focus and separate a mixture of proteins in approximately 1 h, excluding the time required for the staining procedure. On average, the gel-to-gel retardation factor (Rf) variation was 6.2% (+/-0.9%) and pI variation was 2.5% (+/-0.6%). Separated protein spots were excised from stained gels, digested with trypsin, and further identified by MS, thus enabling direct proteomic analysis of the separated proteins.  相似文献   

11.
A high-throughput device has been constructed which allows parallel electroelution of separated SDS-protein bands directly from intact unsectioned polyacrylamide gel slabs as well as single electroelution of certain protein spots into a 384-well standard flat-bottom multiwell plate. The prototype provides complete, quick elution for proteomics from 1-D or from 2-D gels without gel sectioning. Since the elution chamber matrix requires no assembly, sample handling can be easily carried out by existing robotic workstations. The current design is a good candidate for automation of spot elution since there are no moving liquid containing components in the apparatus. Eight SDS-proteins were eluted in test runs and an average 70% sample recovery was achieved by re-electrophoresis of the electro-eluates.  相似文献   

12.
Reed PW  Densmore A  Bloch RJ 《Electrophoresis》2012,33(8):1263-1270
We describe improved methods for large format, two-dimensional gel electrophoresis (2DE) that improve protein solubility and recovery, minimize proteolysis, and reduce the loss of resolution due to contaminants and manipulations of the gels, and thus enhance quantitative analysis of protein spots. Key modifications are: (i) the use of 7 M urea and 2 M thiourea, instead of 9 M urea, in sample preparation and in the tops of the gel tubes; (ii) standardized deionization of all solutions containing urea with a mixed bed ion exchange resin and removal of urea from the electrode solutions; and (iii) use of a new gel tank and cooling device that eliminate the need to run two separating gels in the SDS dimension. These changes make 2DE analysis more reproducible and sensitive, with minimal artifacts. Application of this method to the soluble fraction of muscle tissues reliably resolves ~1800 protein spots in adult human skeletal muscle and over 2800 spots in myotubes.  相似文献   

13.
Zhong H  Yun D  Zhang C  Yang P  Fan H  He F 《Electrophoresis》2008,29(11):2372-2380
In this study, ampholyte-free liquid-phase IEF (LIEF) was combined with narrow pH range 2-DE and SDS-PAGE RP-HPLC for comprehensive analysis of mouse liver proteome. Because LIEF prefractionation was able to reduce the complexity of the sample and enhance the loading capacity of IEF strips, the number of visible protein spots on subsequent 2-DE gels was significantly increased. A total of 6271 protein spots were detected after integrating five narrow pH range 2-DE gels following LIEF prefractionation into a single virtual 2-DE gel. Furthermore, the pH 3-5 LIEF fraction and the unfractionated sample were separated by pH 3-6 2-DE and identified by MALDI-TOF/TOF MS, respectively. In parallel, the pH 3-5 LIEF fraction was also analyzed by SDS-PAGE RP-HPLC MS/MS. LIEF-2-DE and LIEF-HPLC could obviously improve the separation efficiency and the confidence of protein identification, which identified a higher number of low-abundance proteins and proteins with extreme physicochemical characteristics or post-translational modifications compared to conventional 2-DE method. Furthermore, there were 207 proteins newly identified in mouse liver in comparison with previously reported large-scale datasets. It was observed that the combination of LIEF-2-DE and LIEF-HPLC was effective in promoting MS-based liver proteome profiling and could be applied on similar complex tissue samples.  相似文献   

14.
The application of two-dimensional electrophoresis (2-DE) to mutation detection requires the capability to monitor each protein in a 2-DE pattern for significant changes in abundance indicative of a mutation event. Previously, mutation searches were done using a univariate outlier detection method in which each protein spot was considered independently in a classical outlier search. An alternative approach to analysis of 2-DE patterns for quantitative changes is a multivariate procedure which takes advantage of the observation that protein spots in a 2-DE pattern often represent correlated rather than independent measurements. We have compared the efficiency of univariate and multivariate procedures for mutation detection using data from the Argonne National Laboratory 2-DE database of mouse liver proteins. Analyses involving a total of over 1500 gels were performed to compare the performance of a multivariate method based on principal components analysis (PCA) with the univariate method. Up to 279 spots from each pattern were used for PCA. First, a simulation was performed to assess the detection efficiency of PCA for single protein spots decreased in abundance by 50%. Then, the ability to detect actual mutations was tested using eight confirmed mutations. Results show that, compared to a univariate approach to analysis of data from the mouse model system, the multivariate method increases the number of protein spots on each 2-DE pattern that can be monitored for quantitative changes indicative of mutations by compensating for variables that contribute to the background quantitative variability of protein spots.  相似文献   

15.
J Asakawa 《Electrophoresis》1988,9(9):562-568
Two-dimensional electrophoresis (2-DE) with immobilized pH gradient (IPG) gels in capillary tubes was used in the first-dimensional isoelectric focusing (IEF) for the separation of human platelet polypeptides. Two types of IPG tube gels, pH ranges 4-8 and 7-10, containing 8 M urea, 1% Nonidet P-40 and 0.1% pH 3.5-10 Ampholine carrier ampholytes (CA) were prepared by a simple method not requiring special equipment. The addition of CA to both gel and sample solutions was essential in the tube gel IPG system. Proteins were visualized by a modification of Wray's silver-staining technique. The degree of resolution and the number of spots observed on an IPG 2-DE gel with pH 4-8 were comparable with those obtained with O'Farrell's high-resolution 2-DE. Approximately 200 basic polypeptides, which are difficult to separate by conventional CA-based IEF 2-DE or the non-equilibrium pH gradient system, were well resolved by 2-DE with a pH 7-10 IPG tube gel in the first-dimension. The gel patterns with either pH gradient 4-8 or 7-10 were highly reproducible among gels prepared and run simultaneously. These results demonstrated the potential and usefulness of the 2-DE system with IPG gels in capillary tubes.  相似文献   

16.
This paper investigates the preparation of Fasciola hepatica samples for two-dimensional electrophoresis (2-DE). Whole samples were prepared by both hot sodium dodecyl sulfate (SDS) solubilisation and precipitation using trichloroacetic acid (TCA) to remove nonprotein contaminants and to inactivate endogenous proteases. Sample preparation had a marked influence on the 2-DE gel profile. TCA precipitation resulted in no measurable improvement in the profile observed, compared to the untreated control. Solubilisation of sample with hot SDS increased the number of protein spots, as did TCA precipitation with the addition of phosphotungstic acid. The preparation of excretory-secretory (ES) products poses problems due to both high salt concentrations and low protein concentration. All precipitation methods used to overcome this gave similar profiles, except acetone alone, which caused depletion of the larger proteins. TCA in acetone gave the best result, similar to that obtained by centrifugal filtration of the sample. Overcrowding of spots in some regions of the 2-DE gel occurred in the whole Fasciola hepatica sample. This problem was alleviated by differential solubilisation, which also resulted in the enrichment of some proteins.  相似文献   

17.
Choe LH  Lee KH 《Electrophoresis》2000,21(5):993-1000
We tested and compared three different commercially available instruments for isoelectric focusing for proteome analysis by two-dimensional protein electrophoresis. These instruments, the Multiphor, the IPGphor, and the Protean IEF cell, were used with 18 cm immobilized pH gradient strips and run under various conditions. The total number of spots and features was obtained by Melanie software (Bio-Rad Laboratories) and separately by visual inspection. The Multiphor consistently resulted in the highest number of spots detected per gel independent of sample type, immobilized pH gradient (IPG) and method to calculate the number of spots. The Protean IEF cell had the next highest number of spots detected per gel. In the experiments performed, the IPGphor afforded good reproducibility in the total number of Melanie-detected spots from gel to gel while the Protean IEF cell offered better reproducibility in the total number of manually detected spots from gel to gel. Among gels run with the different instruments, differences in the quality of the ammoniacal silver stain were also observed. A measure of quantitative reproducibility suggests that the Protean IEF cell, which was the easiest instrument to use, performs better than the other instruments, although all three instruments had demonstrated good quantitative reproducibility in the experiments performed.  相似文献   

18.
Two-dimensional electrophoresis (2-DE) is a technique involving numerous steps, many of them to be performed manually. Hence, some operator dependency must be taken into account. An attempt to elucidate the reliability of 2-DE combined with silver staining is presented, employing the general practice to validate a method in pharmaceutical analysis. Most proteomic studies employing 2-DE aim at qualitative or quantitative differences in protein expression. One of the most sensitive and broadly applied staining techniques is silver staining. In order to gain information on accuracy, precision, linearity, and ruggedness of this technique, gels were run in replicates with different amounts of protein from a complex standard sample. In addition, sets of gels were repeated by two different operators in a second independent laboratory equipped with identical hardware and software. Our results show that reliable qualitative data on differential protein expression can be obtained by 2-DE, nevertheless replicate gels should be run and experimental conditions have to be kept stringently to a standardized protocol. Quantitative data are just achievable with spots, which are well-resolved, of high quality, with an optical density (OD) above a certain threshold (OD > 10), and which show a linear response. Quantitative differences occurring due to method-derived deviations may easily be misinterpreted as true changes in protein expression. After normalization, relative standard deviation (RSD) values of approximately 30% (n = 4) could be obtained, therefore minor changes (< 50%) should be critically reviewed.  相似文献   

19.
Manabe T  Jin Y 《Electrophoresis》2007,28(12):2065-2079
Previously, we have reported on the analysis of human plasma proteins on a nondenaturing micro-2-DE (mu2-DE) gel, using in-gel digestion followed by MALDI-MS and PMF [1]. Many of the spots on the mu2-DE gel showed apparent masses much larger than the calculated masses of their assigned polypeptides, suggesting noncovalent or covalent interactions between the polypeptides. In the present study, we aimed to further analyze the plasma protein spots on a nondenaturing mu2-DE gel, on which protein/polypeptide interactions have been suggested. The proteins in the spots were extracted under alkaline conditions and subjected to 3-D separation using SDS-PAGE in microslab gel format (muSDS gel) with or without the sample treatment of reduction-alkylation. The clear bands in each lane of the muSDS gels demonstrated the successful extraction of proteins from the relevant gel spot and visualized the relative contents of the polypeptides in the spot. Most of the bands were assigned by in-gel digestion followed by MALDI-MS and PMF (MASCOT/Swiss-Prot). The large discrepancy between the apparent mass value of a protein spot and the estimated mass values of the polypeptide bands on a nonreducing muSDS gel strongly suggested noncovalent polypeptide interactions. The differences in the polypeptide separation patterns on the muSDS gels, between with and without the treatment of reduction-alkylation, confirmed polypeptide disulfide bonding. The method employed here, aiming to integrate information on the proteins separated on nondenaturing 2-DE gels with that on the interactions between polypeptides, would help the comprehensive understanding of complex protein systems.  相似文献   

20.
Ha GH  Lee SU  Kang DG  Ha NY  Kim SH  Kim J  Bae JM  Kim JW  Lee CW 《Electrophoresis》2002,23(15):2513-2524
Two-dimensional gel electrophoresis (2-DE) maps for human stomach tissue proteins have been prepared by displaying the protein components of the tissue by 2-DE and identifying them using mass spectrometry. This will enable us to present an overview of the proteins expressed in human stomach tissues and lays the basis for subsequent comparative proteome analysis studies with gastric diseases such as gastric cancer. In this study, 2-DE maps of soluble fraction proteins were prepared on two gel images with partially overlapping pH ranges of 4-7 and 6-9. On the gels covering pH 4-7 and pH 6-9, about 900 and 600 protein spots were detected by silver staining, respectively. For protein identification, proteins spots on micropreparative gels stained with colloidal Coomassie Brilliant Blue G-250 were excised, digested in-gel with trypsin, and analyzed by peptide mass fingerprinting with delayed extraction-matrix assisted laser desorption/ionization-mass spectrometry (DE-MALDI-MS). In all, 243 protein spots (168 spots in acidic map and 75 spots in basic map) corresponding to 136 different proteins were identified. Besides these principal maps, overview maps (displayed on pH 3-10 gels) for total homogenate and soluble fraction, are also presented with some identifications mapped on them. Based on the 2-DE maps presented in this study, a 2-DE database for human stomach tissue proteome has been constructed and is available at http://proteome.gsnu.ac.kr/DB/2DPAGE/Stomach/. The 2-DE maps and the database resulting from this study will serve important resources for subsequent proteomic studies for analyzing the normal protein variability in healthy tissues and specific protein variations in diseased tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号