首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来,过渡金属氮碳材料由于其廉价、高效与持久耐用的性质得到广泛研究,被视为钯基催化剂的良好替代品.除了可应用于电催化领域,过渡金属氮碳材料还可作为有机反应催化剂,并显示出良好的催化性能.金属卟啉化合物因其高效模拟自然酶的仿生催化功能而闻名,然而在均相催化体系中其难回收、易自我氧化失活的缺点大大阻碍了其实际应用.对金属卟啉进行热处理是提高其催化性能与稳定性的有效方法.此外,作为内部含有金属-氮配合键的含碳大环化合物,金属卟啉是一步合成金属氮碳材料的良好前驱体.本课题组已证明以金属钴卟啉作为前驱体制得的金属氮碳催化剂具有良好的催化乙苯氧化性能.在此基础上,本文采用含有不同过渡金属中心的四苯基金属卟啉(四苯基钴卟啉、四苯基铁卟啉和四苯基钴卟啉)为前驱体,通过无模板法热处理制备了过渡金属氮碳催化剂M-N-C (M=Co,Fe,Mn),考察不同过渡金属中心对催化剂性能的影响.所得催化剂采用N2吸附-脱附、热重(TG)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、拉曼光谱(Raman)和X射线光电子能谱进行了表征.N2吸附-脱附结果表明,所得M-N-C材料具有不同的比表面积与孔道结构,其中Co-N-C催化剂比表面积最大.TG显示,不同金属卟啉的失重情况不同,四苯基钴卟啉失重最多,四苯基铁卟啉次之,四苯基锰卟啉失重最少.从TEM和Raman结果可见,所得不同金属氮碳材料具有不同的石墨化程度,其中Co-N-C材料具有明显的石墨化层状碳结构,石墨化程度最高,Fe-N-C材料次之,而Mn-N-C材料中的碳主要呈片状无定形状态,表明其石墨化程度最低.这可能是不同过渡金属中心在加热过程中对卟啉结构碳化过程催化效果不同所致,其中钴中心对卟啉结构碳化过程的催化效果最佳.另外,考察了该M-N-C催化剂在无溶剂条件下催化分子氧选择性氧化乙苯的性能.结果发现,不同金属中心的M-N-C催化剂表现出不同的催化性能.这可能归因于金属种类的不同、所得催化剂碳氮结构的差别以及金属中心与氮碳结构的协同效应.此外,这些M-N-C材料作为多相催化剂在以氧气为氧源的无溶剂选择性氧化乙苯反应中表现出良好的催化性能,且多次使用后没有明显的活性损失,具有良好的回收使用性能.  相似文献   

2.
Summary The isocratic high-performance liquid chromatography of 1,1′-bis(diphenylphosphino)ferrocene (dppf), 1,1′-bis(diphenylphosphino)ruthenocene (dppr), bis(diphenylphosphino)methane (dppm) and triphenylphosphine (PPh3)-substituted heterometallic Au-Mn or Au-Re carbonyl complexes is reported. A column packed with PGC (porous graphitic carbon) was used after preliminary experiments had shown that silica- and bonded-phase (silica-based) stationary phases were unsatisfactory for separation. The PGC column exhibited unique selectivity for the complexes studied. The mobile phases used were water-acetonitrile, dichloromethanehexane and tetrahydrofuran-hexane. The retention behaviour of the compounds was governed by the polar character and size of molecules, and influenced by metal-metal bond polarity. Separation of isomorphous structures with different metallocenyl moieties was achieved.  相似文献   

3.
The reactions of neutral or cationic manganese carbonyl species towards the oxo-nitrosyl complex [Na(MeOH)[Mo(5)O(13)(OCH(3))(4)(NO)]](2-) have been investigated in various conditions. This system provides an unique opportunity for probing the basic reactions involved in the preparation of solid oxide-supported heterogeneous catalysts, that is, mobility of transition-metal species at the surface and dissolution-precipitation of the support. Under nitrogen and in the dark, the reaction of in situ generated fac-[Mn(CO)(3)](+) species with (nBu(4)N)(2)[Na(MeOH)-[Mo(5)O(13)(OMe)(4)(NO)]] in MeOH yields (nBu(4)N)(2)[Mn(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] at room temperature, while (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)] is obtained under reflux. The former transforms into the latter under reflux in methanol in the presence of sodium bromide; this involves the migration of the fac-[Mn(CO)(3)](+) moiety from a basal kappa(2)O coordination site to a lateral kappa(3)O site. Oxidation and decarbonylation of manganese carbonyl species as well as degradation of the oxonitrosyl starting material and reaggregation of oxo(methoxo)molybdenum fragments occur in non-deareated MeOH, and both (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)] and (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] as well as (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been obtained in this way. The rhenium analogue (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] has also been synthesized. The crystal structures of (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]], (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] and (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been determined.  相似文献   

4.
The clusters Fe2(CO)6(μ-XCH2CH=CH2)(μ3-X)Fe(CO)2Cp (X = S, Se) were prepared by the successive treatment of the bi- and trimetallic complexes Fe2(CO)6(μ-Se2) and Fe3(CO)93-X) with allylmagnesium chloride and CpFe(CO)2I. The clusters obtained contain a noncoordinated C=C bond. The structure of the Se-containing cluster was suggested on the basis of comparison of its spectral data (IR,1H NMR, and Mössbauer spectra) with the spectra of the analogous S-containing complex, which was previously characterized by X-ray diffraction analysis.  相似文献   

5.
 研究了钾促进的双金属中心Ru-M (M=Fe, Co, Ni, Mo)氨合成催化剂.结果表明, Ru-Co催化剂活性最高, Ru和Co含量均为2%的Ru-Co催化剂具有最好的应用价值,其催化活性与Ru和Co含量均为4%的催化剂相近. 此外,还对以镁铝尖晶石、氧化镁和镁铝复合氧化物等不同氧化物为载体的Ru-Co双金属中心催化剂进行了对比研究. 结果表明,以高温煅烧制得的氧化镁作载体的催化剂活性最高.  相似文献   

6.
Perfluoromethyl Element Ligands. XLIII [1] Novel Synthetic Routes to Binuclear Complexes of the Type MM′(CO)8ER2X (M/M′ = Mn/Mn, Mn/Re, Re/Re; E = P, As; R = CF3, Me; X = Hal, ) Mn(CO)5I reacts with compounds of the type (CF3)2EAsMe2 (E = P, As) as with the symmetric E2(CF3)4 ligands in the first step with cleavage of the E‐As bond to yield the pro ducts (CO)5MnE(CF3)2 and Me2AsI. Reaction of the mononuclear complexes with excess of Mn(CO)5I leads in good yields to the known dinuclear compounds (CO)4Mn[E(CF3)2, I]Mn(CO)4 and CO. Me2AsI, the second product of the EAs cleavage, attacks the starting compound Mn(CO)5I giving cis‐Mn(CO)4I(AsMe2I) and CO. This result encouraged us to thoroughly investigate the preparation of cis‐M(CO)4X(EMe2Y) complexes with most of the possible combinations of M = Mn, Re; E = P, As and X, Y = Cl, Br, I. An alternative route to these compounds was opened by the cleavage of the dinuclear manganese or rhenium halides M2(CO)8X2 with the halophosphanes or ‐arsanes Me2EY. This route was found to be especially advantageous for the preparation of the rheniumcarbonyl precursors, since milder conditions than for the CO‐substitution in Re(CO)5X compounds are sufficient for the halogen‐bridged dinuclear complexes. Cis‐M(CO)4X(EMe2Y) complexes were used as precursors for the synthesis of novel homo‐ and heterodinuclear complexes of the type (CO)4M(EMe2, X)M′(CO)4 by reacting the EY function with transition metal carbonylates Kat[M′(CO)5] (Kat = Na, Bu4N, Ph4As). Thus the preparation of a wide range of complexes was possible, which before had been successfully prepared by the direct reaction of Mn2(CO)10 with Me2EX only in few cases, e. g. with Me2AsI. Spectroscopic investigations, using the CO valence frequencies and the 1H‐NMR data of the ligands EMe2Y or of the Me2E bridges, were applied to study the influence of the variables M, M′, E, X, Y and Kat on the reactivity of the mononuclear complexes and the bonding situation in both the mono‐ and the dinuclear systems. The new compounds were characterized by spectroscopic (IR, NMR, MS) and analytic methods (C, H).  相似文献   

7.
Quantum mechanical ab initio calculations at the MP2 and CCSD(T) level of theory have been used to investigate the geometries and bond energies of the complexes M(CO)6–x(H2)x (M = Cr, Mo, W; x = 1, 2, 3). The theoretically predicted M(CO)5–(H2) bond dissociation energies are in excellent agreement with experimental values. The M–(H2) dissociation energies of the bis- and tris-dihydrogen complexes are very similar to the values for the mono-dihydrogen complexes. In M(CO)5(H2) the dihydrogen ligand prefers an eclipsed conformation relative to the equatorial carbonyl groups. For M(CO)4(H2)2 the cis and trans isomers are nearly equal in energy for M = W, while a cis configuration is favoured for M = Cr. For M(CO)3(H2)3 the facial configurations are more stable than the meridial structures for all three metals M. The charge decomposition analysis (CDA) classifies dihydrogen as a donor ligand with moderate acceptor properties. In trans-M(CO)4(H2)2 back donation is increased and the M–(H2) bonds are stronger than in M(CO)5–(H2). Back donation in M(CO)3(H2)3 is slightly weaker than in the mono-dihydrogen complexes M(CO)5(H2).  相似文献   

8.
Structures and spectroscopic characterization of the divalent complexes cis‐dibromidotetrakis(2,6‐dimethylphenyl isocyanide)iron(II) dichloromethane 0.771‐solvate, [FeBr2(C9H9N)4]·0.771CH2Cl2 or cis‐FeBr2(CNXyl)4·0.771CH2Cl2 (Xyl = 2,6‐dimethylphenyl), trans‐dibromidotetrakis(2,6‐dimethylphenyl isocyanide)iron(II), [FeBr2(C9H9N)4] or trans‐FeBr2(CNXyl)4, trans‐dibromidotetrakis(2,6‐dimethylphenyl isocyanide)cobalt(II), [CoBr2(C9H9N)4] or trans‐CoBr2(CNXyl)4, and trans‐dibromidobis(2,6‐dimethylphenyl isocyanide)nickel(II), [NiBr2(C9H9N)2] or trans‐NiBr2(CNXyl)2, are presented. Additionally, crystals grown from a cold diethyl ether solution of zero‐valent Fe(CNXyl)5 produced a structure containing a cocrystallization of mononuclear Fe(CNXyl)5 and the previously unknown dinuclear [Fe(CNXyl)3]22‐CNXyl)3, namely pentakis(2,6‐dimethylphenyl isocyanide)iron(0) tris(μ2‐2,6‐dimethylphenyl isocyanide)bis[tris(2,6‐dimethylphenyl isocyanide)iron(0)], [Fe(C9H9N)5][Fe2(C9H9N)9]. The (M)C—N—C(Xyl) angles of the isocyanide ligand are nearly linear for the metals in the +2 oxidation state, for which the ligands function essentially as pure donors. The νCN stretching frequencies for these divalent metal isocyanides are at or above that of the free ligand. Relative to FeII, in the structure containing iron in the formally zero‐valent oxidation state, the Fe—C bond lengths have shortened, the C[triple‐bond]N bond lengths have elongated, the (M)C—N—C(Xyl) angles of the terminal CNXyl ligands are more bent, and the νCN stretching frequencies have shifted to lower energies, all indicative of substantial M(dπ)→π* backbonding.  相似文献   

9.
The clusters Fe2Ru(CO)12–n (CNBu t ) n (3, n=1; 4, n=2), FeRu2(CO)12–n (CNBu t ) n (5, n=1, 6, n=2) and FeRu2(CO)11(CNCy) (5a) have been prepared by direct substitution from the parent carbonyl precursors Fe2Ru(CO)12 (1) and FeRu2(CO)12 (2). All compounds have been characterized spectroscopically and clusters 3, 4, 5, and 6 by single crystal X-ray determinations. In all cases, the isonitrile ligands adopt axial or pseudo-axial positions on a ruthenium atom. The structures of 35 are very similar to their parent clusters, but the extent of metal framework disorder is significantly less. Cluster 6 adopts the same C 2v Fe3(CO)12 type structure as 4, and thus differs markedly from the parent compound 2, which has a D 3 structure .  相似文献   

10.
Organometallic Lewis Acids. XLII. Carbonyl- and Nitrosyl Complexes of Manganese and Rhenium of Weakly Coordinated Anions (Ph3P)2(ON)2MnX, (Ph3P)n(OC)5–nMX (M = Mn, Re; n = 1, 2; X = FBF3, OSO2CF3, OSO2F, OCORf) The complexes (Ph3P)2(ON)2MnX (X = FBF3, OSO2CF3, OSO2F, OCOCF3, OCOC3F7) and (Ph3P)n(OC)5–nMX (M = Mn, Re; n = 1, 2; X = FBF3, OSO2CF3) have been obtained by reaction of (Ph3P)2(ON)2MnH and (Ph3P)n(OC)5–nMeMe with the corresponding acids HX or from (Ph3P)n(OC)5–nReBr (n = 1, 2) with silver salts AgX, respectively. The compounds have been characterized by their IR and partially by 19F-NMR data. An efficient method for the preparation of the hydride (Ph3P)2(ON)2MnH is reported.  相似文献   

11.
A new series of neutral oxamato-bridged M(II)Cu(II) chiral chains of general formula [MCuL(x)(S)(m)(H(2)O)(n)]·aS·bH(2)O [L(1)=(M)-1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (1a) and Co (1b); L(2)=(P)-1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (2a) and Co (2b)] and the analogous racemic chains of formula [MCuL(3)(S)(m)(H(2)O)(n)]·aS·bH(2)O [L(3)=1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (3a) and Co (3b)] have been prepared by reaction of the corresponding dianionic oxamatocopper(II) complex [Cu(L(x))](2-) with Mn(2+) or Co(2+) cations in either dimethylformamide (DMF) or dimethyl sulfoxide (DMSO). Solid circular dichroism (CD) spectra of the bimetallic chain compounds were recorded to establish their chiral and enantiomeric nature. They exhibit maximum positive and negative Cotton effects, each pair of enantiomeric chains being non-superimposable mirror images. The crystal structures of the Mn(II)Cu(II) (1a-3a) and the Co(II)Cu(II) (1b and 2b) chain compounds were solved by single-crystal X-ray diffraction methods. Our attempts to obtain X-ray quality crystals of 3b were unsuccessful. The values of the shortest interchain Mn···Mn and Co···Co distances are indicative of a good isolation of neighbouring chains in the crystal lattice, which is caused by the bulky aromatic ligand. Although all the Mn(II)Cu(II) and Co(II)Cu(II) chains exhibit ferrimagnetic behaviour (-J(MnCu)=18.9-26.6 cm(-1) and -J(CoCu)=19.5-32.5 cm(-1)), only the enantiopure Co(II)Cu(II) chains (1b and 2b) show slow magnetic relaxation at low temperatures (T(B)=0.6-1.8 K), which is a characteristic of single-chain magnets (SCMs) and is related to the magnetic anisotropy of the high-spin Co(II) ion. Analysis of the SCM behaviour of 1b and 2b, based on Glauber's theory for an Ising one-dimensional system, shows a thermally activated mechanism for the magnetic relaxation (Arrhenius law dependence). The energy barriers (E(a)) to reverse the magnetisation direction are 8.2 (1b) and 8.1cm(-1) (2b), whereas the pre-exponential factor (τ(0)) is 1.9×10(-8) (1b) and 6.0×10(-9) s (2b). Interestingly, the racemic Co(II)Cu(II) chain analogue, 3b, showed no evidence of SCM behaviour.  相似文献   

12.
The bimetallic Ru-M (M=Co,Fe,Ni,Mo, Rh,Cr, Mn) catalysts were prepared from SiO_2-supported bimetallic carbonyl clusters, and it was found that the Ru-Co, Ru-Fe and Ru-Mo bimetallic carbonyl cluster-derived catalysts showed higher activity and selectivity for oxygenates such as C_1-C_5 alcohols in CO hydrogenation,in contrast to catalysts prepared from SiO_2-supported homometallic Ru and Co carbonyl clusters. In situ FT-IR studies revealed that the bands at 1584 and 1555 cm~(-1) species were intermediates to produce methanol and higher oxygenates,and at higher temperatures the 1584 cm~(-1) species could react with alkyl to form 1555 cm~(-1) species. By the surface chemical reaction and the IR study of isotopic molecules,it was suggested that 1584 and 1555 cm~(-1) were assigned to surface formyl and acetyl species.  相似文献   

13.
以MCl2和配体L(L=1,10 菲咯啉 5,6 二酮)为原料,合成了标题配合物MLCl2,M=Mn(Ⅱ)、Fe(Ⅱ)、Co(Ⅱ),并经元素分析、电子吸收光谱、红外光谱表征.三者均为四配位的电中性配合物,热稳定性高于500K,易溶于DMF、DMSO和吡啶,可溶于二氯乙烷、乙醇和水.它们在DMSO、DMF中于350nm和310nm附近显示出强的M→L荷移跃迁.  相似文献   

14.
A series of neutral oxamato‐bridged heterobimetallic chains of general formula [MCu(Lx)2(S)2] ? p S ? q H2O [p=0–1, q=0–2.5; L1=N‐2,6‐dimethylphenyloxamate, S=DMF with M=Mn ( 1 a ) and Co ( 1 b ); L2=N‐2,6‐diethylphenyloxamate, S=DMF with M=Mn ( 2 a ) and Co ( 2 b ) or S=DMSO with M=Mn ( 2 c ) and Co ( 2 d ); L3=N‐2,6‐diisopropylphenyloxamate, S=DMF with M=Mn ( 3 a ) and Co ( 3 b ) or S=DMSO with M=Mn ( 3 c ) and Co ( 3 d )] were prepared by treating the corresponding anionic oxamatocopper(II) complexes [Cu(Lx)2]2? (x=1–3) with M2+ cations (M=Mn and Co) in DMF or DMSO as the solvent. The single‐crystal X‐ray structures of 2 a and 3 a reveal the occurrence of well‐isolated, zigzag, oxamato‐bridged manganese(II)–copper(II) chains. The intrachain Cu ??? Mn distances across the oxamato bridge are 5.3761(7) and 5.4002(17) Å for 2 a and 3 a , respectively, whereas the shortest interchain Mn ??? Mn distances are 9.4475(16) and 8.1649(14) Å for 2 a and 3 a , respectively. All of these MIICuII chains (M=Mn and Co) exhibit 1D ferrimagnetic behaviour with moderately strong intrachain antiferromagnetic coupling between the square‐planar CuII and octahedral high‐spin MII ions across the oxamato bridge [?J=31.4–35.2 and 33.4–44.8 cm?1, respectively; H =∑i?J S M,i( S Cu,i+ S Cu,i?1)]. Only the CoIICuII chains show slow magnetic relaxation effects characteristic of single‐chain magnets (SCMs). Analysis of the magnetic relaxation dynamics of 3 d shows a thermally activated mechanism (Arrhenius law dependence) with values of the pre‐exponential factor (τ0=2.6×10?9 s) and activation energy (Ea=7.7 cm?1) that are typical of SCMs. In contrast, two relaxation regimes are observed for 2 d in different temperature regions (τ0=3.2×10?10 s and Ea=24.7 cm?1 for T<4.5 K and τ0=3.2×10?14 s and Ea=37.5 cm?1 for T>4.5 K).  相似文献   

15.
Quantum chemical calculations at the gradient corrected DFT level using the exchange correlation functionals BP86 and B3LYP of the geometries of the title compounds are reported. The theoretically predicted bond lengths and angles of the model compounds are in excellent agreement with experiment. The nature of the metal-ligand interactions is quantitatively analyzed with an energy decomposition method. The analysis of the electronic structure of the neutral metal germylyne complexes Ia-Id and the metallogermylenes IIa-IId shows that the former compounds have about the same degree of electrostatic and covalent bonding, while the relative strength of the covalent contributions in the latter molecules is lower (41-42%) than the electrostatic attraction (58-59%). The a' '(pi) bonding contribution in the group-6 germylyne complexes Ia-Ic is rather high (42% of the orbital interactions). In the iron complex Id, it is even higher (53.8%) than the sigma bonding. The pi bonding contributions to the covalent bonding become much less (18-20%) in the metallogermylenes IIa-IId.  相似文献   

16.
Two carbonyl complexes of rhenium, [HRe(CO)5] and [CH3Re(CO)5], were used to probe surface sites of TiO2 (anatase). These complexes were adsorbed from the gas phase onto anatase powder that had been treated in flowing O2 or under vacuum to vary the density of surface OH sites. Infrared (IR) spectra demonstrate the variation in the number of sites, including Ti+3? OH and Ti+4? OH. IR and extended X‐ray absorption fine structure (EXAFS) spectra show that chemisorption of the rhenium complexes led to their decarbonylation, with formation of surface‐bound rhenium tricarbonyls, when [HRe(CO)5] was adsorbed, or rhenium tetracarbonyls, when [CH3Re(CO)5] was adsorbed. These reactions were accompanied by the formation of water and surface carbonates and removal of terminal hydroxyl groups associated with Ti+3 and Ti+4 ions on the anatase. Data characterizing the samples after adsorption of [HRe(CO)5] or [CH3Re(CO)5] determined a ranking of the reactivity of the surface OH sites, with the Ti+3? OH groups being the more reactive towards the rhenium complexes but the less likely to be dehydroxylated. The two rhenium pentacarbonyl probes provided complementary information, suggesting that the carbonate species originate from carbonyl ligands initially bonded to the rhenium and from hydroxyl groups of the titania surface, with the reaction leading to the formation of water and bridging hydroxyl groups on the titania. The results illustrate the value of using a family of organometallic complexes as probes of oxide surface sites.  相似文献   

17.
The reaction of manganese pentacarbonyl anion with chloromethylidyne tricobaltnonacarbonyl, (μ3-CCl)Co3(CO)9, leads to reduction of the cluster with formation of Mn2(CO)10 and Co(CO), whilst reaction of Mn(CO) with the bis(diphenylphosphino)methane (dppm)-stabilised cluster (μ3-CCl)Co3(CO)7(μ-dppm) leads to the formation of (μ3-CH)Co2Mn(CO)8(μ-dppm), 1. The unique feature of the structure of 1 is the incorporation of a seven-coordinate manganese atom into the metal triangle.  相似文献   

18.
Five new complexes, [M(CO)5(apmsh)] [M = Cr; (1), Mo; (2), W; (3)], [Re(CO)4Br(apmsh)] (4) and [Mn(CO)3(apmsh)] (5) have been synthesized by the photochemical reaction of metal carbonyls [M(CO)6] (M = Cr, Mo and W), [Re(CO)5Br], and [Mn(CO)3Cp] with 2-hydroxyacetophenone methanesulfonylhydrazone (apmsh). The complexes have been characterized by elemental analysis, mass spectrometry, f.t.-i.r. and 1H spectroscopy. Spectroscopic studies show that apmsh behaves as a monodentate ligand coordinating via the imine N donor atom in [M(CO)5(apmsh)] (1–4) and as a tridentate ligand in (5).  相似文献   

19.
20.
在(CH_3)_3NO存在下,PPh_3取代M(CO)_5(M=Fe,Ru,Os)中CO的反应速度遵循二级速度定律,分别与[M(CO)_5]和[(CH_3)_3NO]的一次方成正比,与[PPh_3]无关。反应速度按FeRu>Os的次序约减小4倍。 1 实验方法 典型的动力学实验中,将(CH_3)_3NO的C_2H_5OH溶液和PPh_3的己烷溶液分别用注射器加到体积合适的烧瓶中,再注入Fe(CO)_5并迅速震荡烧瓶,再取出一部分反应液立即注入充N_2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号