首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The differential scanning calorimetry (DSC) and the freeze-fracture electron microscopy of dipalmitoyl phosphatidylcholine (DPPC) liposomes containing distearoyl-N-monomethoxy poly(ethylene glycol)-succinyl-phosphatidylethanolamines (PEG-DSPE) were carried out. The DSC peak of DPPC liposomes containing PEG-DSPE had a shoulder. The main phase transition temperature of DPPC bilayer membranes containing PEG-DSPE whose molecular weight of PEG is less than 3000 was slightly shifted to a higher temperature, while that containing PEG-DSPE whose molecular weight of PEG is more than 5000 was slightly shifted to a lower temperature. The electron micrographs of freeze-fracture replicas of DPPC liposomes containing PEG-DSPE quenched from 37±2°C exhibited banded and planar textures, suggesting the lateral phase separation in the bilayer membranes.  相似文献   

2.
The thermotropic behavior of dipalmitoylphosphatidylcholine (DPPC) multibilayers containing up to 10 mol% of lyso-palmitoylphosphatidylcholine (lyso-PPC) with and without low content of poly(ethylene glycol:2000)-grafted dipalmitoylphosphatidylethanolamine (PEG:2000-DPPE) has been studied by high sensitivity differential scanning calorimetry (DSC) and electron spin resonance (ESR) using the spin probe di-tert-butyl-nitroxide (DTBN). The three lipids, dispersed in buffer at appropriate concentrations, form thermosensitive liposomes used as site-specific drug-delivery systems. Without polymer–lipids, the DPPC main transition temperature is downshifted of 1.2–1.3 °C at the highest lyso-PPC content. The molar enthalpy and the cooperative unit of the DPPC main transition first decrease rapidly, then more slowly and finally slightly increase with lyso-PPC content. Moreover, in the mixed dispersions, the membrane fluidity increases at any temperature. The addition up to 5 mol% of PEG:2000-DPPE to DPPC/10 mol% lyso-PPC mixtures does not affect neither the thermotropic phase behavior nor the transition cooperativity and the fluidity of the dispersions.  相似文献   

3.
The effects of poly(ethylene glycol) (PEG) chain length of PEG-lipid on the membrane characteristics of liposomes were investigated by differential scanning calorimetry (DSC), freeze-fracture electron microscopy (FFEM), fluorescence polarization measurement and permeability measurement using carboxyfluorescein (CF). PEG-liposomes were prepared from mixtures of dipalmitoyl phosphatidylcholine (DPPC) and distearoyl phosphatidylethanolamines with covalently attached PEG molecular weights of 1000, 2000, 3000 and 5000 (DSPE-PEG). DSC and FFEM results showed that the addition of DSPE-PEG to DPPC in the preparation of liposomes caused the lateral phase separation both in the gel and liquid-crystalline states. The fluidity in the hydrocarbon region of liposomal bilayer membranes was not significantly changed by the addition of DSPE-PEG, while that in the interfacial region was markedly increased. From these results, it was anticipated that the CF leakage from PEG-liposomes is accelerated compared with DPPC liposomes. However, CF leakage from liposomes containing DSPE-PEG with a 0.060 mol fraction was depressed compared with regular liposomes, and the leakage decreased with increasing PEG chain length. Furthermore, the CF leakage from liposomes containing DSPE-PEG with a 0.145 mol fraction was slightly increased compared with that of liposomes containing DSPE-PEG with a 0.060 mol fraction. It is suggested that the solute permeability from the PEG-liposomes was affected by not only properties of the liposomal bilayer membranes such as phase transition temperature, phase separation and membrane fluidity, but also the PEG chain of the liposomal surface.  相似文献   

4.
This study describes the miscibility phase behavior in two series of biodegradable triblock copolymers, poly(l-lactide)-block-poly(ethylene glycol)-block-poly(l-lactide) (PLLA-PEG-PLLA), prepared from two di-hydroxy-terminated PEG prepolymers (Mn = 4000 or 600 g mol−1) with different lengths of poly(l-lactide) segments (polymerization degree, DP = 1.2-145.6). The prepared block copolymers presented wide range of molecular weights (800-25,000 g mol−1) and compositions (16-80 wt.% of PEG). The copolymer multiphases coexistance and interaction were evaluated by DSC and TGA. The copolymers presented a dual stage thermal degradation and decreased thermal stability compared to PEG homopolymers. In addition, DSC analyses allowed the observation of multiphase separation; the melting temperature, Tm, of PLLA and PEG phases depended on the relative segment lengths and the only observed glass transition temperature (Tg) in copolymers indicated miscibility in the amorphous phase.  相似文献   

5.
The phase behavior of poly(ethylene glycol) grafted liposomes (PEG-liposomes) was investigated by differential scanning calorimetry (DSC), dynamic light scattering (DLS) and cryo-transmission electron microscopy (cryo-TEM). PEG-liposomes were prepared from mixtures of dipalmitoyl phosphatidylcholine (DPPC) and distearoyl phosphatidylethanolamine with a covalently attached PEG molecular weight of 2000 (DSPE-PEG2000). From the results of DLS measurements, the coexistence of PEG-liposomes and small molecular assemblies were confirmed at mole fractions of DSPE-PEG2000 above about 0.1. Moreover, it was confirmed that small molecular assemblies were disk micelles by cryo-TEM. However, the phase transition enthalpies of PEG-liposomes were hardly changed according to the DSC measurement, though the mole fraction of the PEG lipid increased. From these results, it was suggested that the phase transition enthalpies hardly changed despite mixed micelles being formed because the bilayer structure of the disk micelle maintains high cooperativity between the DPPC molecules.  相似文献   

6.
Interactions of the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with the amphiphilic diblock copolymer Ch-lPEG30-b-hbPG24 (ChP) are studied at the air–water interface by surface pressure–mean molecular area (πmmA) measurements of mixed Langmuir films and adsorption measurements of ChP to the air–water interface covered with DPPC monolayers at different initial surface pressure values π 0. ChP is composed of a single hydrophobic cholesteryl (Ch) moiety covalently bound to a diblock copolymer consisting of a hydrophilic linear poly(ethylene glycol) (lPEG) block and a hydrophilic hyperbranched poly(glycerol) (hbPG) block. Langmuir isotherms and compression moduli of the mixed Langmuir films of different molar ratios reveal distinct interactions between DPPC and ChP during compression. It is demonstrated that the behavior of the DPPC/ChP mixtures is dominated by DPPC up to a molar ratio of 10:1, whereas the behavior is predominantly governed by ChP in mixtures with lower DPPC content (molar ratios of 5:1, 2:1, and 1:1). In adsorption measurements, a strong affinity of ChP to DPPC is observed after injection into the water subphase. The surface pressure value π in up to which ChP is able to penetrate into DPPC monolayers is determined to the remarkably high value of 48.2 mN/m which attests the favorable interactions between DPPC and the Ch moiety of ChP. Atomic force microscopy on LB films of DPPC/ChP mixtures of different molar ratios transferred onto hydrophilic substrates confirms the presence of two different phases, a DPPC-rich phase and a ChP-rich phase.  相似文献   

7.
An easy method for grafting of poly(3-hydroxyoctanoate-co-3-hydroxyundecenoate) (PHOU) was developed. Oxidation of the pendant double bonds of PHOU into carboxyl groups to yield poly(3-hydroxyoctanoate-co-3-hydroxy-9-carboxydecanoate) (PHOD) and the esterification of the carboxyl side groups with poly(ethylene glycol) (PEG) were carried out in a single reaction solution. The grafting yield is dependent on the molar mass of the PEG graft. The maximum carboxyl group conversion (52%) was obtained with PEG Mn = 350 and decreased with increasing molar mass of PEG (19% for PEG Mn = 2000). Yields were determined by 1H and 13C NMR. Short PEG grafts lowered the glass transition temperature (PHOD-g-PEG 350 −57 °C) compared to PHOD (−19 °C) and PHOU (−39 °C). This effect depends on the COOH conversion and PEG chain length. Grafting enhanced the hydrophilic character of the modified polymers making them soluble in polar solvents, such as alcohols and water/acetone mixtures. PHOD-g-PEG films were more stable towards hydrolytic degradation as PHOD films. No obvious modification of films was observed after more than 200 days at pH 7.2 and 37 °C. The molar mass of the grafted polymers decreased only slightly during this period, while PHOD films were hydrolyzed into soluble fragments.  相似文献   

8.
This study was aimed to investigate the physicochemical changes induced in 200 nm extruded oligolamellar DPPC:DPPG (10:1) liposomes by freezing, followed by γ-irradiation, in the absence and presence of 5 mM stable cyclic nitroxide radicals, 2,2,6,6-tetramethylpiperidine-1-oxyl (Tempo) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol). The characterization is based on the use of differential scanning calorimetry (DSC) and was aimed to differentiate the contribution of freezing and γ-irradiation in the presence and absence of nitroxides. Liposomal preparations of DPPC/DPPG which have sub-, pre- and main-phase transitions in the temperature range (0°C<T m<50°C) were used. Our results show that: (1) freezing modified and induced fusion to MLV as well as fission to SUV, (2) freezing did not fully prevent the radiation-induced changes in the thermotropic characteristics of the liposomes, and (3) Tempo and Tempol did not prevent the changes in thermotropic behavior caused as a result of freezing of the liposomal dispersion. These results demonstrate that DSC is a powerful and sensitive tool in both physical and chemical studies of lipid assemblies. This work was supported in part by the Szold Foundation, Jerusalem, Israel and United State-Israel Binational Science Foundation (grant 95/318 to Y.B.).  相似文献   

9.
A thermal study using DSC and Hot Stage Microscopy (HSM) was carried out to investigate the interaction in solid state of the binary system PEG 4000 — oxazepam, and to establish their phase diagram. The eutectic composition, which melting occurs at lower temperature as compared with the pure components, has been determined. The results obtained by DSC and HSM have indicated that PEG 4000 — oxazepam mixtures displays no obvious incompatibilities, and that the system shows a typical eutectic behaviour. However because of the closeness of the melting of PEG 4000 to the eutectic temperature, it was difficult to determine precisely the eutectic composition and temperature on the basis of DSC measurements alone. The use of heats of fusion corresponding to physical mixtures allowed an estimation of the eutectic composition at 6% w/w oxazepam. Additional information of temperature (57.6C) and composition (5–10% w/w oxazepam) of the eutectic was obtained by HSM using the contact method. This low melting temperature in this range of compositions offers advantages in terms of drug stability and easy manufacture.  相似文献   

10.
A new biodegradable polymer system, poly(p-dioxanone) (PPDO)/poly(ethylene glycol) (PEG) blend was prepared by a solvent casting method using chloroform as a co-solvent. The PPDO/PEG blends have different weight ratios of 95/5, 90/10, 80/20 and 70/30. Crystallization of homopolymers and blends were investigated by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). When 5% of PEG was blended, the crystallization exothermal peaks (Tc) of PPDO increased sharply and the crystallization exothermal peaks (Tc) of PEG decreased slightly compared with the homopolymers. The crystallization rates of both components increased, and caused greater relative crystallization degree (Xt%). But when the content of PEG was more than 5%, the crystalline behaviors of blends had no more significant changes accordingly. The melting points of each sample varied little over the entire composition range in this study. The nonisothermal crystallization of PPDO homopolymer and blend (PPDO/PEG = 70/30) were also studied by DSC. The crystallization began at a higher temperature when the cooling rates were slower. The nonisothermal crystallization kinetics of blends was analyzed by Ozawa equation. The results showed that the Ozawa equation failed to describe the whole crystallization of the blend, but Mo equation could depict the nonisothermal crystallization perfectly.  相似文献   

11.
Numerous attempts to overcome the poor water solubility of cam ptothecin (CPT) by various nano drug delivery systems are described in various sources in the literature. However, the results of these approaches may be hampered by the incomplete separation of free CPT from the formulations, and this issue has not been investigated in detail. This study aimed to promote the solubility and continuous delivery of CPT by developing long-lasting liposomes using various weights (M.W. 2000 and 5000 Daltons) of the hydrophilic polymer polyethylene glycol (PEG). Conventional and PEGylated liposomes containing CPT were formulated via the lipid film hydration method (solvent evaporation) using a rotary flash evaporator after optimising various formulation parameters. The following physicochemical characteristics were investigated: surface morphology, particle size, encapsulation efficiency, in vitro release, and formulation stability. Different molecular weights of PEG were used to improve the encapsulation efficiency and particle size. The stealth liposomes prepared with PEG5000 were discrete in shape and with a higher encapsulation efficiency (83 ± 0.4%) and a prolonged rate of drug release (32.2% in 9 h) compared with conventional liposomes (64.8 ± 0.8% and 52.4%, respectively) and stealth liposomes containing PEG2000 (79.00 ± 0.4% and 45.3%, respectively). Furthermore, the stealth liposomes prepared with PEG5000 were highly stable at refrigeration temperature. Significant changes were observed using various pharmacokinetic parameters (mean residence time (MRT), half-life, elimination rate, volume of distribution, clearance, and area under the curve) of stealth liposomes containing PEG2000 and PEG5000 compared with conventional liposomes. The stealth liposomes prepared with PEG5000 showed promising results with a slow rate of release over a long period compared with conventional liposomes and liposomes prepared with PEG2000, with altered tissue distribution and pharmacokinetic parameters.  相似文献   

12.
The binary phase diagram of KNO3-KClO3 is studied by means of differential scanning calorimetry (DSC) and high-temperature X-ray diffraction. The limited solid solutions, K(NO3)1−x(ClO3)x (0<x<0.20) and K(NO3)1−x(ClO3)x (0.90<x<1.0), were formed in the KNO3-based solid solutions and KClO3-based solid solutions phase, respectively. For KNO3-based solid solutions, KNO3 ferroelectric phase can be stable from 423 to 223 K as a result of substituting of NO3 by ClO3-radicals. The temperatures for solidus and liquidus have been determined based on limited solid solutions. Two models, Henrian solution and regular solution theory for KNO3-based (α) phase and KClO3-based (β) phase, respectively, are employed to reproduce solidus and liquidus of the phase diagram. The results are in good agreement with the DSC data. The thermodynamic properties for α and β solid solutions have been derived from an optimization procedure using the experimental data. The calculated phase diagram and optimized thermodynamic parameters are thermodynamically self-consistent.  相似文献   

13.
Cu–Zn–Sn shape memory alloy strips with composition range of 13.70–46.30 mass% Sn were fabricated by electrodepositing Sn on a shim brass surface and then subsequently annealed at a constant temperature of 400 °C for 120 min under flowing nitrogen. Subjecting the Sn-plated strips to differential scanning calorimetry (DSC) analysis revealed that the austenitic start (A s) temperature was essentially constant at 225 °C while the martensite start (M s) temperature was consistently within the 221.5–222 °C interval. Austenite to martensite phase transformation showed two distinct peaks on the DSC thermogram which can be attributed to the non-homogeneity of the bulk Cu–Zn–Sn ternary alloy. The latent heats of cooling and heating were found to increase with the mass% Sn plated on the shim brass. Effect of annealing temperature was also investigated wherein strips with an essentially constant composition of 26 mass% Sn were annealed at a temperature range of 350–420 °C for 120 min under flowing nitrogen. Varying the annealing temperature has no significant effect on the transformation temperatures of the ternary alloy.  相似文献   

14.
15.
The objective of this study was to synthesize and characterize a set of biodegradable block copolymers based on TPGS-block-poly(ε-caprolactone) (TPGS-b-PCL) and to assess their self-assembled structures as a nanodelivery system for paclitaxel (PAX). The conjugation of PCL to TPGS was hypothesized to increase the stability and the drug solubilization characteristics of TPGS micelles. TPGS-b-PCL copolymer with various PCL/TPGS ratios were synthesized via ring opening bulk polymerization of ε-caprolactone using TPGS, with different molecular weights of PEG (1–5 kDa), as initiators and stannous octoate as a catalyst. The synthesized copolymers were characterized using 1H NMR, GPC, FTIR, XRD, and DSC. Assembly of block copolymers was achieved via the cosolvent evaporation method. The self-assembled structures were characterized for their size, polydispersity, and CMC using dynamic light scattering (DLS) technique. The results from the spectroscopic and thermal analyses confirmed the successful synthesis of the copolymers. Only copolymers that consisted of TPGS with PEG molecular weights ≥ 2000 Da were able to self-assemble and form nanocarriers of ≤200 nm in diameter. Moreover, TPGS2000-b-PCL4000, TPGS3500-b-PCL7000, and TPGS5000-b-PCL15000 micelles enhanced the aqueous solubility of PAX from 0.3 µg/mL up to 88.4 ug/mL in TPGS5000-b-PCL15000. Of the abovementioned micellar formulations, TPGS5000-b-PCL15000 showed the slowest in vitro release of PAX. Specifically, the PAX-loaded TPGS5000-b-PCL15000 micellar formulation showed less than 10% drug release within the first 12 h, and around 36% cumulative drug release within 72 h compared to 61% and 100% PAX release, respectively, from the commercially available formulation (Ebetaxel®) at the same time points. Our results point to a great potential for TPGS-b-PCL micelles to efficiently solubilize and control the release of PAX.  相似文献   

16.
The aim of this study was to examine effects of a catalyst of Nickel-imidazole, i.e. Im6NiBr2 on the cure reaction and network properties of diglycidyl ether of bisphenol A. DSC and FT-IR measurements are carried out on the epoxy resin loaded with 5, 15, and 30 phr of nickel salt to get some insights into the storage stability. It has been concluded that the storage stability has mainly depended on the epoxy composition and was the lowest for the highest level of curing agent. Kinetics of the cure has been described by applying iso-conversional method of Ozawa to scanning DSC data demonstrating that the studied cure reaction is autocatalytic in nature. The Kamal phenomenological approach has been utilized to fit the experimental isothermal DSC data. The model showed a satisfactory fitting of the experimental results at either early stages or at the final steps of the studied cure reaction. Further, the model did not provide a reasonable fitting in the propagation step of polymerization, 0.3 < α < 0.5, possibly due to existence of the additional reaction/s which did not consider in the used model. DMTA is used to find the optimum cure schedule. It has been shown that the sample with a postcure treatment offers the highest value of glass transition temperature (Tg) in the tan δ peak. SEM and X-ray analyses are employed to investigate the fracture surface morphology and to understand the distribution of nickel in the cured samples exhibiting that the nickel is scattered in the continuous phase homogenously. Flexural properties of the sample cured at optimum conditions are also determined.  相似文献   

17.
0.8[xB2O3-(1 − x)SiO2]-0.2K2O (with 0 ≤ x ≤ 1) glasses were synthesized by melt quenching techniques. DSC curves of the glasses exhibit only one glass transition. Calorimetric measurements of heats of dissolution in lead borate at 973 K indicated small negative enthalpies of mixing. Consequently phase separation was not observed over the whole composition range. The results are in good agreement with the structural data available in the literature.  相似文献   

18.
A simple but efficient strategy has been developed for the synthesis of novel di‐, tri‐, multi‐, and star‐block copolymers comprising poly(ethylene glycol) (PEG) and polyisobutylene (PIB) blocks. The synthesis principle involves the coupling of appropriately terminally functionalized PEG and PIB sequences, specifically the hydrosilation of mono‐, di‐, and tetra‐allyl‐telechelic PEGs (PEG‐allyl, allyl‐PEG‐allyl, and C(‐PEG‐allyl)4 by mono‐ and di‐Si(CH3)2H telechelic PIBs (PIB‐SiH and HiS‐PIB‐SiH). Representative block copolymers, for example, PEG‐PIB, PIB‐PEG‐PIB, (‐PIB‐PEG‐)n, and C(‐PEG‐PIB)4 have been assembled and their structures determined by 1H and 13C NMR spectroscopy. The bulk and surface morphology of select triblocks have been investigated by DSC and AFM and the findings interpreted in terms of phase‐separated PEG and PIB microdomains. The swelling behavior in water of various block copolymers also has been studied. Block copolymers containing 50–70 wt % PIB produce hydrogels, the integrity of which is maintained by physical crosslinks by PIB segments. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3200–3209, 2000  相似文献   

19.
Series of PTT-b-PEO copolymers with different composition of rigid PTT and PEO flexible segments were synthesized from dimethyl terephthalate (DMT), 1,3-propanediol (PDO), poly(ethylene glycol) (PEG, Mn = 1000 g/mol) in a two stage process involving transesterification and polycondensation in the melt. The weight fraction of flexible segments was varied between 20 and 70 wt%. The molecular structure of synthesized copolymers was confirmed by 1H NMR and 13C NMR spectroscopy. The superstructure of these polymers was characterized by DSC, DMTA, WAXS and SAXS measurements. It was observed that domains of three types can exist in PTT-b-PEOT copolymers: semi-crystalline PTT, amorphous PEO rich phase (amorphous PEO/PTT blended phase) and semi-crystalline PEO phase. Semi-crystalline PEO phase was observed only at temperature below 0 °C for sample containing the highest concentration of PEO segment. The phase structure, thermal and mechanical properties are effected by copolymer composition. The copolymers containing 30÷70 wt% of PEO segment posses good thermoplastic elastomers properties with high thermal stability. Hardness and tensile strength rise with increase of PTT content in copolymers.  相似文献   

20.
A sequence of structural phase transitions in [(CH3)2NH2]3[Bi2Cl9] (DMACB) is established on the basis of differential scanning calorimetry (DSC) and dilatometric studies. Four phase transitions are found: at 367/369, 340/341, 323/325 and 285/292 K (on cooling/heating). The crystal structure of DMACB is determined at 350 K. It crystallizes in monoclinic space group P21/n: a=8.062(2), b=21.810(4), c=14.072(3) Å, β=92.63(3)°, Z=4, R1=0.0575, wR2=0.1486. The crystal is built of the double chain anions (“pleated ribbon structure”) and the dimethylammonium cations. Dielectric studies in the frequency range 75 kHz-900 MHz indicate relatively fast reorientation of the dimethylammonium cations over the I, II, III and IV phases. Infrared spectra are recorded in the temperature range 40-300 K and analyzed in region assigned to the symmetric and asymmetric NC2 stretching vibrations. Optical observations show the existence of the ferroelastic domain structure over all phases below 367 K. The possible mechanisms of phase transitions are discussed on the basis of presented results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号