首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The absorption and emission behavior of flavin mononucleotide (FMN) in the light-, oxygen- and voltage-sensitive (LOV) domain LOV1 of the photoreceptor Phot1 from the green alga Chlamydomonas reinhardtii was studied. The results from the wild-type (LOV1-WT) were compared with those from a mutant in which cysteine 57 was replaced by serine (LOV1-C57S), and with free FMN in aqueous solution. A fluorescence quantum yield of phi(F) = 0.30 and a fluorescence lifetime of tau(F) = 4.6 ns were determined for FMN in the mutant LOV1-C57S, whereas these quantities are reduced to about phi(F) = 0.17 and tau(F) = 2.9 ns for LOV1-WT, indicating an enhanced intersystem crossing in LOV1-WT because of the adjacent sulfur of C57. A single-exponential fluorescence decay was observed in picosecond laser time-resolved fluorescence measurements for both LOV1-WT and LOV1-C57S as expected for excited singlet state relaxation by intersystem crossing and internal conversion. An excitation intensity dependent fluorescence signal saturation was observed in steady-state fluorescence measurements for LOV1-WT, which is thought to be because of the formation of a long-lived intermediate flavin-C(4a)-cysteinyl adduct in the triplet state (few microseconds triplet lifetime, adduct lifetime around 150 s). No photobleaching was observed for LOV1-C57S, because no thiol group is present in the vicinity of FMN for an adduct formation.  相似文献   

2.
In LOV2, the blue-light sensitive domain of phototropin, the primary photophysical event involves intersystem crossing (ISC) from the singlet-excited state to the triplet state. The ISC rate is enhanced in LOV2 as compared to flavin mononucleotide (FMN) in solution, which likely results from a heavy-atom effect of a nearby conserved cysteine, C450. Here, we applied fluorescence line narrowing (FLN), resonance Raman (RR) and Fourier-transform infrared (FTIR) spectroscopy to investigate the electronic structure of FMN bound to Avena sativa LOV2 (AsLOV2), its C450A mutant and Adiantum LOV2 (Phy3LOV2). We demonstrate that FLN is the method of choice to obtain accurate vibrational spectra on highly fluorescent flavoproteins. The vibrational spectrum of AsLOV2-C450A showed small but significant shifts with respect to those of wild type AsLOV2 and Phy3LOV2, with a systematic down-shift of Ring I vibrations, upshifts of Ring II and III vibrations and an upshift of the C2=O mode. These trends are similar to those in FMN model systems with an electron-donating group substituted at Ring I, known to induce a quinoid character to the electronic structure of oxidized flavin. Thus, enhancement of the ISC rate in LOV2 is induced through weak electron donation by the cysteine which mixes the FMN pi-electrons with the heavy sulfur orbitals, manifesting itself in a quinoid character of the ground electronic state of oxidized FMN. The proximity of the cysteine to FMN thus not only enables formation of a covalent adduct between FMN and cysteine, but also facilitates the rapid electronic formation of the reactive FMN triplet state.  相似文献   

3.
Phy3-LOV2 is the chromophore domain of a blue-light photoreceptor for tropic responses of plants. FMN is noncovalently bound to phy3-LOV2, and the protein structure is characteristic of the LOV (light-oxygen-voltage) domain. Primary photoreaction is considered to be adduct formation between FMN and a cysteine, while deprotonation of the cysteine S-H group was suggested. On the basis of the infrared spectral analysis, however, we have shown that the cysteine of phy3-LOV2 is in the protonated S-H form, and not in the thiolate form in the ground state. Upon formation of S390, the S-H group disappears, presumably forming the adduct between FMN and Cys966. S390 can be trapped at 150 K, and the protein structure of S390 may not be changed drastically at 295 K.  相似文献   

4.
The blue-light sensitive photoreceptor, phototropin, is a flavoprotein which regulates the phototropism response of higher plants. The photoinduced triplet state and the photoreactivity of the flavin-mononucleotide (FMN) cofactor in two LOV domains of Avena sativa, Adiantum capillus-veneris, and Chlamydomonas reinhardtii phototropin have been studied by time-resolved electron paramagnetic resonance (EPR) and UV-vis spectroscopy at low temperatures (T < or = 80 K). Differences in the electronic structure of the FMN as reflected by altered zero-field splitting parameters of the triplet state could be correlated with changes in the amino acid composition of the binding pocket in wild-type LOV1 and LOV2 as well as in mutant LOV domains. Even at cryogenic temperatures, time-resolved EPR experiments indicate photoreactivity of the wild-type LOV domains, which was further characterized by UV-vis spectroscopy. Wild-type LOV1 and LOV2 were found to form an adduct between the FMN cofactor and the functional cysteine with a yield of 22% and 68%, respectively. The absorption maximum of the low-temperature photoproduct of wild-type LOV2 is red-shifted by about 15 nm as compared with the FMN C(4a)-cysteinyl adduct formed at room temperature. In light of these observations, we discuss a radical-pair reaction mechanism for the primary photoreaction in LOV domains.  相似文献   

5.
Conformational dynamics of LOV2 domain of phototropin, a plant blue light photoreceptor, is studied by the pulsed laser induced transient grating (TG) technique. The TG signal of LOV2 without the linker part to the kinase domain exhibits the thermal grating signal due to the heat releasing from the excited state and a weak population grating by the adduct formation. The diffusion coefficients of the adduct product after forming the chemical bond between the chromophore and Cys residue are found to be slightly smaller than that of the reactant, which implies that the core shrinks slightly on the adduct formation. After that change, no significant conformational change was observed. On the other hand, the signal of LOV2 with the linker part to the kinase domain clearly shows very different diffusion coefficients between the original and the adduct species. The large difference indicates significant global conformational change of the protein moiety upon the adduct formation. More interestingly, the diffusion coefficient is found to be time-dependent in the observation time range. The dynamics representing the global conformational change is a clear indication of a spectral silent intermediate between the excited triplet state and the signaling product. From the temporal profile analysis of the signal, the rate of the conformational change is determined to be 2 ms.  相似文献   

6.
The blue light photoreceptor phototropin mediates crucial processes in plants leading to optimization of photosynthesis. Phototropin comprises two flavin mononucleotide-binding LOV (light-, oxygen-, or voltage-sensitive) domains. The LOV domains undergo a photocycle upon illumination, in which two intermediates have been detected by UV/Vis spectroscopy. The triplet excited state of flavin is formed and decays within a few microseconds into a photoadduct with an adjacent cysteine, which represents the signaling state of the LOV domain. For bond formation of the photoadduct, several reaction pathways have been proposed, but evidence for an intermediate at ambient conditions has not been found. Here, we performed nanosecond time-resolved UV/Vis spectroscopy on the phototropin-LOV1 domain from Chlamydomonas reinhardtii. We designed a flow cell which was used to efficiently replace the sample after each photoexcitation because the cycling time is in the order of hundreds of seconds. The comparison of difference spectra of the wild type with those of the C57S mutant that produces only the triplet excited state revealed the existence of an additional intermediate between the triplet and the adduct state. This intermediate exhibits spectral properties similar to a neutral flavin radical. This finding supports a reaction mechanism involving a neutral radical pair.  相似文献   

7.
Light, oxygen, or voltage (LOV) domains constitute a new class of photoreceptor proteins that are sensitive to blue light through a noncovalently bound flavin chromophore. Blue-light absorption by the LOV2 domain initiates a photochemical reaction that results in formation of a long-lived covalent adduct between a cysteine and the flavin cofactor. We have applied ultrafast spectroscopy on the photoaccumulated covalent adduct state of LOV2 and find that, upon absorption of a near-UV photon by the adduct state, the covalent bond between the flavin and the cysteine is broken and the blue-light-sensitive ground state is regained on an ultrafast time scale of 100 ps. We thus demonstrate that the LOV2 domain is a reversible photochromic switch, which can be activated by blue light and deactivated by near-UV light.  相似文献   

8.
The phototropins are blue-light receptors that base their light-dependent action on the reversible formation of a covalent bond between a flavin mononucleotide (FMN) cofactor and a conserved cysteine in light, oxygen or voltage (LOV) domains. The primary reactions of the Avena sativa phototropin 1 LOV2 domain were investigated by means of time-resolved and low-temperature fluorescence spectroscopy. Synchroscan streak camera experiments revealed a fluorescence lifetime of 2.2 ns in LOV2. A weak long-lived component with emission intensity from 600 to 650 nm was assigned to phosphorescence from the reactive FMN triplet state. This observation allowed determination of the LOV2 triplet state energy level at physiological temperature at 16600 cm(-1). FMN dissolved in aqueous solution showed pH-dependent fluorescence lifetimes of 2.7 ns at pH 2 and 3.9-4.1 ns at pH 3-8. Here, too, a weak phosphorescence band was observed. The fluorescence quantum yield of LOV2 increased from 0.13 to 0.41 upon cooling the sample from 293 to 77 K. A pronounced phosphorescence emission around 600 nm was observed in the LOV2 domain between 77 and 120 K in the steady-state emission.  相似文献   

9.
An extended hydrogen-bonding (HB) network stabilizes the isoalloxazine ring of the flavin mononucleotide (FMN) chromophore within the photosensing LOV domain of blue-light protein receptors, via interactions between the C(2)═O, N(3)H, C(4)═O, and N(5) groups and conserved glutamine and asparagine residues. In this work we studied the influence of the HB network on the efficiency, kinetics, and energetics of a LOV protein photocycle, involving the reversible formation of a FMN-cysteine covalent adduct. The following results were found for mutations of the conserved amino acids N94, N104, and Q123 in the Bacillus subtilis LOV protein YtvA: (i) Increased (N104D, N94D) or strongly reduced (N94A) rate of adduct formation; this latter mutation extends the lifetime of the flavin triplet state, i.e., adduct formation, more than 60-fold, from 2 μs for the wild-type (WT) protein to 129 μs. (ii) Acceleration of the overall photocycle for N94S, N94A, and Q123N, with recovery lifetimes 20, 45, and 85 times faster than for YtvA-WT, respectively. (iii) Slight modifications of FMN spectral features, correlated with the polarization of low-energy transitions. (iv) Strongly reduced (N94S) or suppressed (Q123N) structural volume changes accompanying adduct formation, as determined by optoacoustic spectroscopy. (v) Minor effects on the quantum yield, with the exception of a considerable reduction for Q123N, i.e., 0.22 vs 0.49 for YtvA-WT. The data stress the importance of the HB network in modulating the photocycle of LOV domains, while at the same time establishing a link with functional responses.  相似文献   

10.
Phototropin is a blue-light receptor involved in the phototropic response of higher plants. The photoreceptor comprises a protein kinase domain and two structurally similar flavin-mononucleotide (FMN) binding domains designated LOV1 and LOV2. Blue-light irradiation of recombinant LOV2 domains induces the formation of a covalent adduct of the thiol group of a functional cysteine in the cofactor-binding pocket to C(4a) of the FMN. Cysteine-to-alanine mutants of LOV domains are unable to form that adduct but generate an FMN radical upon illumination. The recombinant C450A mutant of the LOV2 domain of Avena sativa phototropin was reconstituted with universally and site-selectively (13)C-labeled FMN and the (13)C NMR signals were unequivocally assigned. (13)C NMR spectra were acquired in darkness and under blue-light irradiation. The chemical shifts and the coupling patterns of the signals were not affected by irradiation. However, under blue-light exposure, exceptionally strong nuclear-spin polarization was developed in the resonances belonging to certain carbons of the FMN's isoalloxazine moiety. An enhancement of the NMR absorption was observed for the signals of C(5a), C(7), and C(9). NMR lines in emission were detected for the signals belonging to C(2), C(4), C(4a), C(6), C(8), and C(9a). The signal of C(10a) remained in absorption but was slightly attenuated. In contrast, the intensities of the NMR signals belonging to the carbons of the ribityl side chain of FMN were not affected by light. The observation of spin-polarized (13)C-nuclei in the NMR spectra of the mutant LOV2 domain is clear evidence for radical-pair intermediates in the reaction steps following optical sample excitation.  相似文献   

11.
The Bacillus subtilis protein YtvA, related to plant phototropins (phot), binds flavin mononucleotide (FMN) within the N‐terminal light, oxygen and voltage (LOV) domain. The blue light‐triggered photocycle of YtvA and phot involves the reversible formation of a covalent photoadduct between FMN and a cysteine (cys) residue. YtvA contains a single tryptophan, W103, localized on the LOV domain and conserved in all phot‐LOV domains. In this study, we show that the fluorescence parameters of W103 in YtvA‐LOV are markedly different from those observed in the full‐length YtvA. The fluorescence quantum yields are ca 0.03 and 0.08, respectively. In YtvA‐LOV, the maximum is redshifted (ca 345 vs 335 nm) and the average fluorescence lifetime shorter (2.7 vs 4.7 ns). These data indicate that W103 is located in a site of tight contact between the two domains of YtvA. In the FMN‐cys adduct, selective excitation of W103 at 295 nm results in minimal changes of the fluorescence parameters with respect to the dark state. On 280 nm excitation, however, there is a detectable decrease in the fluorescence emitted from tyrosines, with concomitant increase in W103 fluorescence. This effect is reversible in the dark and might arise from a light‐regulated energy transfer process from a yet unidentified tyrosine to W103.  相似文献   

12.
Phototropin is a blue light-activated photoreceptor that plays a dominant role in the phototropism of plants. The protein contains two subunits that bind flavin mononucleotide (FMN), which are responsible for the initial steps of the light-induced reaction. It has been proposed that the photoexcited flavin molecule adds a cysteine residue of the protein backbone, thus activating autophosphorylation of the enzyme. In this study, the electronic properties of several FMN-related compounds in different charge and spin states are characterized by means of ab initio quantum mechanical calculations. The model compounds serve as idealized model chromophores for phototropism. Reaction energies are estimated for simple model reactions, roughly representing the addition of a cysteine residue to the flavin molecule. Excitation energies were calculated with the help of time-dependent density functional theory. On the basis of these calculations we propose the following mechanism for the addition reaction: (1) after photoexcitation of FMN out of the singlet ground state S0, excited singlet state(s) are populated; these relax to the lowest excited singlet state S1, and subsequently by intersystem crossing FMN in the lowest triplet state, T1 is formed; (2) the triplet easily removes the neutral hydrogen atom from the H-S group of the cysteine residue; and (3) the resulting thio radical is added.  相似文献   

13.
Phototropin is a blue-light photoreceptor in plants that mediates phototropism, chloroplast relocation, stomata opening and leaf expansion. Phototropin molecule has two photoreceptive domains named LOV1 (light-oxygen-voltage) and LOV2 in the N-terminus and a serine/threonine kinase domain in the C-terminus, and acts as a blue light-regulated kinase. Each LOV domain binds a flavin mononucleotide as a chromophore and undergoes unique cyclic reactions upon blue-light absorption that comprises a cysteinyl-flavin adduct formation through a triplet-excited state and a successive adduct break to revert to the initial ground state. The molecular reactions underlying the photocycle are reviewed and one of the probable molecular schemes is presented. Adduct formation alters the secondary protein structure of the LOV domains. This structural change could be transferred to the linker between the kinase domain and involved in the photoregulation of the kinase activity. The structural changes as well as the oligomeric structures seem to differ between LOV1 and LOV2, which may explain the proposed roles of each domain in the photoregulation of the kinase activity. The photoregulation mechanism of phototropin kinase is reviewed and discussed in reference to the regulation mechanism of protein kinase A, which it resembles.  相似文献   

14.
Abstract— A continuation of studies is presented on the excited triplet state of flavins using EPR techniques. Detailed experiments are reported on the triplet state of flavin-mono-nucleotide (FMN) and flavin-adenine-dinucleotide (FAD). Action spectra of triplet yield are explained in terms of the optical absorption for FMN and FAD. Effects of light saturation, concentration quenching and oxygen on the triplet state are discussed. It is suggested that the rate constant k 3 for the intersystem crossover from the excited singlet to the triplet state is increased by oxygen and quenchers such as KI. Detailed kinetic studies are presented on the formation of the triplet state.  相似文献   

15.
Plants use sophisticated photosensing mechanisms to maximize their utilization of the available sunlight and to control developmental processes. The plant blue-light receptors of the Phot family mediate plant phototropism and contain two light, oxygen, and voltage (LOV)-sensitive domains as photoactive elements. Here, we report combined quantum mechanical/molecular mechanical simulations of the photocycle of a complete Phot-LOV1 domain from Chlamydomonas reinhardtii. We have investigated the electronic properties and structural changes that follow blue-light absorption. This permitted us to characterize the pathway for flavin-cysteinyl adduct formation, which was found to proceed via a neutral radical state generated by hydrogen atom transfer from the reactive cysteine residue, Cys57, to the chromophore flavin mononucleotide. Interestingly, we find that adduct formation does not cause any larger scale conformational changes in Phot-LOV1, which suggests that dynamic effects mediate signal transmission following the initial photoexcitation event.  相似文献   

16.
Attaching stable radicals to organic chromophores is an effective method to enhance the intersystem crossing (ISC) of the chromophores. Herein we prepared perylene-oxoverdazyl dyads either by directly connecting the two units or using an intervening phenyl spacer. We investigated the effect of the radical on the photophysical properties of perylene and observed strong fluorescence quenching due to radical enhanced ISC (REISC). Compared with a previously reported perylene-fused nitroxide radical compound (triplet lifetime, τT=0.1 μs), these new adducts show a longer-lived triplet excited state (τT=9.5 μs). Based on the singlet oxygen quantum yield (ΦΔ=7 %) and study of the triplet state, we propose that the radical enhanced internal conversion also plays a role in the relaxation of the excited state. Femtosecond fluorescence up-conversion indicates a fast decay of the excited state (<1.0 ps), suggesting a strong spin-spin exchange interaction between the two units. Femtosecond transient absorption (fs-TA) spectra confirmed direct triplet state population (within 0.5 ps). Interestingly, by fs-TA spectra, we observed the interconversion of the two states (D1↔Q1) at ∼80 ps time scale. Time-resolved electron paramagnetic resonance (TREPR) spectral study confirmed the formation of the quartet sate. We observed triplet and quartet states simultaneously with weights of 0.7 and 0.3, respectively. This is attributed to two different conformations of the molecule at excited state. DFT computations showed that the interaction between the radical and the chromophore is ferromagnetic (J>0, 0.05∼0.10 eV).  相似文献   

17.
The synthesis, electrochemistry, and photophysical behavior of a Pt(II) terpyridyl perylenediimide (PDI) acetylide (1) charge-transfer complex is reported. The title compound exhibits strong (ε ≈ 5 × 10(4) M(-1)cm(-1)) low-energy PDI acetylide-based π-π* absorption bands in the visible range extending to 600 nm, producing highly quenched singlet fluorescence (Φ = 0.014 ± 0.001, τ = 109 ps) with respect to a nonmetalated PDI model chromophore. Nanosecond transient absorption spectroscopy revealed the presence of a long excited-state lifetime (372 ns in 2-methyltetrahydrofuran) with transient features consistent with the PDI-acetylide triplet state, ascertained by direct comparison to a model Pt(II) PDI-acetylide complex lacking low-energy charge-transfer transitions. For the first time, time-resolved step-scan FT-IR spectroscopy was used to characterize the triplet excited state of the PDI-acetylide sensitized in the title compound and its associated model complex. The observed red shifts (~30-50 cm(-1)) in the C═O and C≡C vibrations of the two Pt(II) complexes in the long-lived excited state are consistent with formation of the (3)PDI acetylide state and found to be in excellent agreement with the expected change in the relevant DFT-calculated IR frequencies in the nonmetalated PDI model chromophore (ground singlet state and lowest triplet excited state). Formation of the PDI triplet excited state in the title chromophore was also supported by sensitization of the singlet oxygen photoluminescence centered at ~1275 nm in air-saturated acetonitrile solution, Φ((1)O(2)) = 0.52. In terms of light emission, only residual PDI-based red fluorescence could be detected and no corresponding PDI-based phosphorescence was observed in the visible or NIR region at 298 or 77 K in the Pt(II) terpyridyl perylenediimideacetylide.  相似文献   

18.
The reaction pathways for the photochemical formation of cyclobutane thymine dimers in DNA are explored using hybrid density functional theory techniques. It is concluded that the thymine-thymine [2 + 2] cycloaddition displays favorable energy barriers and reaction energies in both the triplet and the singlet excited states. The stepwise cycloaddition in the triplet excited state involves the initial formation of a diradical followed by ring closure via singlet-triplet interaction. The triplet mechanism is thus completely different from the concerted singlet state cycloaddition processes. The key geometric features and electron spin densities are also discussed. Bulk solvation has a major effect by reducing the barriers and increasing the diradical stabilities. The present results provide a rationale for the faster cycloreaction observed in the singlet excited states than in the triplet excited states.  相似文献   

19.
The reaction pathway for the photochemical formation of thymine-thymine (6-4) dimers in DNA is explored using hybrid density functional theory techniques in gas and in bulk solvent. It is concluded that the photo-induced cycloaddition displays favorable energy barriers in the triplet excited state. The stepwise cycloaddition in the triplet excited state involves the initial formation of a diradical followed by ring closure via singlet-triplet interaction. The key geometric features and electron spin densities are also discussed. The difference in barriers of H3' transfer for the lowest-lying triplet and singlet states shows that the singlet oxetane intermediate could catch the second photon to accelerate the rate of proton transfer, leading to formation of the Dewar structure. The present results provide a rationale for the formation of thymine-thymine (6-4) dimers in the triplet excited states.  相似文献   

20.
The blue‐light (BL) absorbing protein Xcc‐LOV from Xanthomonas citri subsp. citri is composed of a LOV‐domain, a histidine kinase (HK) and a response regulator. Spectroscopic characterization of Xcc‐LOV identified intermediates and kinetics of the protein's photocycle. Measurements of steady state and time‐resolved fluorescence allowed determination of quantum yields for triplet (ΦT = 0.68 ± 0.03) and photoproduct formation (Φ390 = 0.46 ± 0.05). The lifetime for triplet decay was determined as τT = 2.4–2.8 μs. Fluorescence of tryptophan and tyrosine residues was unchanged upon light‐to‐dark conversion, emphasizing the absence of significant conformational changes. Photochemistry was blocked upon cysteine C76 (C76S) mutation, causing a seven‐fold longer lifetime of the triplet state (τT = 16–18.5 μs). Optoacoustic spectroscopy yielded the energy content of the triplet state. Interestingly, Xcc‐LOV did not undergo the volume contraction reported for other LOV domains within the observation time window, although the back‐conversion into the dark state was accompanied by a volume expansion. A radioactivity‐based enzyme function assay revealed a larger HK activity in the lit than in the dark state. The C76S mutant showed a still lower enzyme function, indicating the dark state activity being corrupted by a remaining portion of the long‐lived lit state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号