首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interaction of ortho-phenylenediamine with the nonanuclear nickel trimethylacetate cluster Ni9(4-OH)3(3-OH)3( n -OOCMe3)12(HOOCCMe3)4(I) in an amine deficiency yields the antiferromagnetic trinuclear complex [Ni3{-N,N"-(NH2)2C6H4}2(HCCOOCMe3)3(3-OH)(-OOCCMe3)4]+(OOCCMe3)(III) containing bridging diamine ligands. Reaction of excess diamine with Ior IIIleads to the formation of the paramagnetic monomer Ni{2-o-(NH2)2C6H4}2(OOCCMe3)2(IV), which reacts with atmospheric oxygen to form the known bis(semiquinonediimine) complex Ni[1,2-(NH)2C6H4]2(V).  相似文献   

2.
Tetrametal clusters such as Ru4(CO)13(-PPh2)2 and Ru4(CO)10(-PPh2)4 are 64-electron systems and, with five metal-metal interactions, are formally electron rich. In fact these clusters have unusual rhomboidal (or flat butterfly) structures with three or four elongated Ru-Ru bonds. With molecular orbitals antibonding with respect to metal metal interactions occupied in such clusters, facile two electron oxidation or ligand dissociation processes should occur, giving electron precise molecules. The molecule Ru4(CO)13(-PPh2)2 1a undergoes a remarkable, reversible transformation upon loss of CO affording (-H)Ru4(CO)10(-PPh2)[4-1(P),1(P),1(P),1,2-{C6H4}PPh]3 a cluster which contains a five coordinate phosphido bridge and an orthometallated 2 arene ring. This conversion is reversible under CO. These and other results which will be discussed confirm that M4 clusters with electrons in excess of the expected EAN rule count may exhibit unusual reactivity. The solid-state CP/MAS and static powder31P NMR spectra of some of these clusters exhibit99/101Ru-31P couplings, values of which have been measured for the first time.  相似文献   

3.
Reaction of Ru4(CO)13(3-PPh) (1) with the 1,3,5-hexatriyne Me3SiCCCCC CSiMe3 under mild thermal conditions affords initially Ru4(CO)10(-CO)2{4-1,1,2-P(Ph)C(CCSiMe3)C(CCSiMe3) (2), via the facile formation of a P–C bond in a manner similar to that demonstrated previously with alkynes and diynes. The 62-CVE cluster 2 readily decarbonylates to give crystallographically characterised Ru4(CO)10(-CO)(4-PPh){4-1,1,2,2-Me3SiCCC2CCSiMe3} (3). Attempts to further incorporate the pendant alkyne moieties in 3 into the Ru4 coordination environment were partially successful with Ru4(CO)10(4-PPh)(4-1,1,3,3-RC4R') (4, R/R'=SiMe3/CCSiMe3) being formed as a minor product together with the unusual toluene coordinated species Ru4(CO)7(6-C6H5Me)(4-PPh)(4-1,1,3,3-Me3SiC4CCSiMe4) (5). Cluster 3 reacts with an excess of Me3SiCCCCCCSiMe3 to give the open chain cluster Ru4(CO)9(3-PPh){4-2,2,4,4,-C4(CCSiMe3)(SiMe3)C4(CCSiMe3)3} (6).  相似文献   

4.
The reactions of 8-amino-2,4-dimethylquinoline (L) (1) with polynuclear nickel(ii) and cobalt(ii) hydroxotrimethylacetato complexes under anaerobic conditions were studied. The nonanuclear cluster Ni9(4-OH)3(3-OH)3(n-OOCCMe3)12(HOOCCMe3)4 gave the mononuclear complex Ni(2-L)(2-OOCCMe3)2 (2). The tetranuclear complex Ni4(3-OH)2(-OOCCMe3)4(2-OOCCMe3)2(EtOH)6 produced the mononuclear complex Ni(2-L)(2-OOCCMe3)(OOCCMe3)L (3). At room temperature, the cobalt-containing polynuclear trimethylacetates, viz., the polymer [Co(OH) n (OOCCMe3)2–n ] x and the tetranuclear complex Co4(3-OH)2(-OOCCMe3)4(2-OOCCMe3)2(EtOH)6, were transformed into the trinuclear cobalt(ii) complex Co3(3-OH)(-OOCCMe3)4(2-L)2(OOCCMe3) (4). Meanwhile, at 80 °C these compounds generated the binuclear cobalt(iii) complex Co2(22-(HN)C9NMe2)2(-OOCCMe3)(L)(OOCCMe3)3 (5). The structures of the resulting compounds were established by X-ray diffraction analysis. Compounds 24 exhibit the antiferromagnetic spin-spin exchange coupling, whereas compound 5 is diamagnetic.  相似文献   

5.
The diacetylenic adducts, Fe2(CO)6{-EC(H) = C(C CMe)E} (E = E, E E; E, E = S, Se, Te) (1–8) have been obtained from the room temperature stirring of Fe2(CO)6(-EE) with HC CC CMe in methanol solvent containing sodium acetate. Compounds 1–8 have been characterized by IR and multinuclear NMR (1H, 13C, 77Se, and l25Te) spectroscopy. Trends in the chemical shifts of 77Se and 125Te NMR spectra of Fe2(CO)6{-EC(H) = C(C CMe)E} with a variation of EE are discussed.  相似文献   

6.
The reaction of the dinuclear complex Co2(-OOCCMe3)2(2-OOCCMe3)2bpy2 (1) with the polymer [Co(OH) n (OOCCMe3)2–n ] x afforded the unsymmetrical dinuclear complex bpyCo2(2-O,2-OOCCMe3)(2-O,O"-OOCCMe3)2(2-OOCCMe3) (2). The reaction of 2,2"-dipyridylamine with [Co(OH) n (OOCCMe3)2–n ] x gave rise to the analogous complex [(C5H4N)2NH]Co2(2-O,2-OOCCMe3)(-OOCCMe3)2(2-OOCCMe3) (3). The reaction of complex 1 with Ni4(3-OH)2(-OOCCMe3)4(OOCCMe3)2(MeCN)2[2-o-C6H4(NH2)(NHPh)]2 (4) produced an isostructural heterometallic analog of complex 2 with composition bpyM2(2-O,2-OOCCMe3)(2-O,O"-OOCCMe3)2(2-OOCCMe3) (5) (M = Co, Ni; Co : Ni = 1 : 1) and the dinuclear heterometallic complex bpy(HOOCCMe3)M(-OH2)(-OOCCMe3)2M(OOCCMe3)2[o-C6H4(NH2)(NHPh)] (6) (M = Co, Ni; Co : Ni = 0.15 : 1.85). Compounds 2 and 5 exhibit ferromagnetic spin-spin exchange interactions.  相似文献   

7.
The reaction of the tetranuclear trimethylacetate complex Co4(3-OH)2(-OOCCMe3)4(2-OOCCMe3)2(EtOH)6 with pyridine in acetonitrile was studied. Two new compounds, viz., the hexanuclear cobalt(ii) complex Co6py4(3-OH)2(-OOCCMe3)10 (25% yield) and the unusual ionic compound [Co3py3(3-O)(-OOCCMe3)6]+[Co4py(4-O)(-OOCCMe3)7] (5% yield), were prepared. The structures of the new compounds were established by X-ray diffraction analysis.  相似文献   

8.
Triosmium cluster Os3(-H)(CO)10(--2-CCC Me2OMe) (1) was obtained by treating OS3(-H)(-Cl)(CO)10 with LiCCCMe2OMe. The reaction of cluster1 with HBF4 · Et2O at –60 °C leads to the cationic complex [Os3(-H)(CO)10(-,,2-C=C=C Me2)]+BF4 (2) with an allenylidene ligand. Thes1H and13C NMR spectra of complex2 reveal the temperature dependence caused by migration of hydrocarbon and carbonyl ligands. Thermodynamic parameters were obtained for be exchange process of the allenylidene ligand.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp, 2990–2992, December, 1996.  相似文献   

9.
The thermal reaction of Ru3(CO)10(-Ph2PCH2PPh2) (1) with enyne PhCH=CHCCPh afforded the trinuclear ruthenium clusters Ru3(CO)6{3-P(Ph)CH2PPh2}{3-C(Ph)=CHCC(Ph)(1,2-C6H4)C(=0)} (2), Ru3(-H)(CO)5{3-P(Ph)CH2PPh2}{3-C(Ph)=CHCC(Ph)(1,2-C6H4)C(—0)} (3), and Ru3(CO)6(-CO){3-P(Ph)CH2PPh2}{3-C(C=CPh2)CH=C(H)Ph} (4) and also two isomers of Ru3(CO)5(-CO)(-Ph2PCH2PPh2){3-C4Ph2(CH=CHPh)2} (5a and 5b). Clusters 2, 3, and 4 were characterized by IR spectroscopy, 1H and 31P NMR spectroscopy, and X-ray diffraction analysis. The reaction of complex 1 with enyne FcCH=CHCCFc gave rise to the Ru3(CO)6{3-P(Ph)CH2PPh2}{3-C(Fc)=CHCC(Fc)(1,2-C6H4)C(=0)} (6) and Ru3(-H)(CO)5{3-P(Ph)CH2PPh2}{3-C(Fc)=CHCC(Fc)(1,2-C6H4)C(—0)} (7) clusters. According to the spectral data, the latter compounds are isostructural to complexes 2 and 3, respectively.  相似文献   

10.
The reaction of the dinuclear complex Co2(bpy)2(OOCBut)4 with the tetranuclear complex Ni4(3-OH)2(OOCBut)6(EtOH)6 afforded the trinuclear heterometallic complex M3(bpy)2(3-OH)(-OOCBut)4(OOCBut) (6) (M = Ni, Co; Ni : Co = 1.2 : 1) in which two metal atoms are in an octahedral environment and one metal atom is in a tetrahedral environment. The reaction of 2,2"-bipyridine with Co4(3-OH)2(OOCBut)6(HOEt)6 (reagent ratio was 2 : 1) or the reaction of bpy with Co8(4-O)2( n -OOCBut)12 (reagent ratio was 4 : 1) produced a homometallic analog of 6, viz., the trinuclear cluster Co3(bpy)2(3-OH)(-OOCBut)4(OOCBut) (8). The reaction of 1,10-phenanthroline (phen) with the [Co(OH) n (OOCBut)2–n ] x polymer gave the analogous trinuclear cluster (phen)2Co3(3-OH)(2-OOCBut)4(1-OOCBut). Compounds 6 and 8 exhibit antiferromagnetic spin-spin exchange interactions.  相似文献   

11.
Chemical and electrochemical oxidation of rhodium (III) oxo-bridged carboxylate complexes was studied. The chemical [with O3 and Ce(IV) salts] or electrochemical (at potentials of 1.00-1.20 V) oxidations of the binuclear complexes [Rh2(-O)(-O2CCH3)2(H2O)6]2 + and [Rh2(-O)(-O2CCF3)2(H2O)6]2 + leads to the superoxo complexes [Rh2(-O)(O2-)(-O2CCH3)2(H2O)5]+ and [Rh2(-O)(O2 -)(-O2CCF3)2(H2O)5]+ with terminal coordination of O2-. The trinuclear acetate [Rh3(3-O)(-O2CCH3)6(H2O)3]+, unlike its trifluoroacetate analog [Rh3(3-O)(-O2CCF3)6(H2O)3]+, is oxidized only electrochemically at a potential of 1.38 V. The oxidation of [Rh3(3-O)(-O2CCH3)6(H2O)3]+ is reversible and involves formation of an unstable superoxo group O2 - between two Rh3III(3-O) cores.  相似文献   

12.
Cyclic voltammetry and galvanostatic coulometry techniques were used to determine how the redox properties of osmium binuclear -oxocarboxylates [Os2 IV(-O)(-O2CR)2Cl4L2] (R = CH3, CCl3; L = PPh3 and R = CH3; L = AsPh3) are influenced by the nature of the bridging carboxylate ligand RCOO and ligand L. It was shown that all compounds in solution of dichloromethane undergo two single-electron reduction processes. The data obtained were compared with the DFT calculations of the electronic structure of the model complexes [Os2 IV(-O)(-O2CR)2Cl4L2] (R = CH3, CCl3; L = PH3 and R = CH3; L = AsH3).  相似文献   

13.
Summary The dinuclear complexes {RuCp*(-Cl)}2(-dppm) (1) and {RuCp*(-Cl)}2 (-dppe) (3) are obtained by reacting [RuCp*(3-Cl)]4 withdppm, anddppe, respectively.1 is readily oxidized with AgCF3SO3, instead of chloride abstraction, to afford the dinuclear complex [{RuCp*(-Cl)}2(-dppm)](SO3CF3)2 (2) with two metal centers connected by a single Ru-Ru bond. Under the same conditions,3 decomposes to several intractable materials. Similarly to1, RuCp* (dmpe)Cl reacts with AgCF3SO3 to afford the Ru(III) complex [RuCp*(dmpe)Cl](SO3CF3) (4) without no halide abstraction. The crystal structures of2,3, and4 are presented.
Synthese und Röntgenstrukturanalyse einiger ein- und zweikerniger Rutheniumkomplexe mit Bisphosphinliganden
Zusammenfassung Die Komplexe {RuCp*(-Cl)}2(-dppm) (1) und {RuCp*(-Cl2(-dppe) (3) wurden durch Umsetzung von [RuCp*(3-Cl)]4 mitdppm bzw.dppe dargestellt.1 wird durch AgCF3SO3 zum zweikernigen Komplex [{RuCp*(-Cl)}2(-dppm)](SO3CF3)2 (2) oxidiert, welcher eine Ru-Ru-Metallbindung aufweist. Unter den gleiche Reaktionsbedingungen zersetzt sich3 zu undefinierten Produkten. Analog zu1 reagiert RuCp* (dmpe)Cl mit AgCF3SO3 zum Ru(III)-Komplex [Ru(Cp*)(dmpe)Cl](SO3CF3) (4) wobei es zu keiner Chloridabspaltung kommt. Von2,3, und4 wurden die Kristallstrukturen bestimmt.
  相似文献   

14.
Transformations of polymeric trimethylacetate complexes [M(OH) n (OOCCMe3)2 – n ] m (M = Ni (I) and Co (II)) and clusters Ni9(4-OH)3(3-OH)3(-O,O-OOCCMe3)(-O,O"-OOCCMe3)7(3-O,O,O"-OOCCMe3)3(4-O,O,O",O"-OOCCMe3)(HOOCCMe3)4(III) and Co6(3-OH)2(-OOCCMe3)10(HOOCCMe3)4(VIII), which are formed from Iand IIupon their recrystallization from nonpolar solvents, were studied. It was shown that the action of N-phenyl-o-phenylenediamine (L) on Ior IIIresults, depending on the solvent, in different tetranuclear clusters with the hydroxo bridges. For example, in benzene, the L2Ni4(3-OH)2(HOOCCMe3)4(-OOCCMe3)6complex (IX) is formed; its L molecules are coordinated in a monodentate way, whereas in acetonitrile, they chelate to give the {[o-C6H4(NH2)(NHPh)]2Ni4(3-OH)2(MeCN)2(OOCCMe3)2(-OOCCMe3)4} compound (X). Heating of Xin the presence of atmospheric oxygen yields IX, the mononuclear bissemiquinonediimine [o-C6H4(NH)(NPh)]2Ni complex (XI), and water. It was noted that the use of aniline in these reactions affords, independent of the nature of the solvent, only one (NH2C6H5)2Ni4(3-OH)2(HOOCCMe3)4(-OOCCMe3)6cluster (VI); in acetonitrile, this cluster is formed as the solvate VI· 2HOOCCMe3(VIa). When treated with ethanol, Iand IIIgive the Ni4(EtOH)6(3-OH)2(2-OOCCMe3)4(OOCCMe3)2cluster (V), which is structurally close to the known cobalt-containing analog IV. Thermolysis of IVin decalin at 170° causes its dimerization, giving the octanuclear Co8(4-O)2( n -OOCCMe3)12complex (VII) with the tetradentate oxo bridges.  相似文献   

15.
Kinetic equations were formulated, which describe coagulation–fragmentation process in a low concentrated suspension flow at a low shear rate. In such a system dispersed phase divided into fine and coarse fractions as the system is brought to equilibrium. Kinetic equations of two-fraction model were formulated. An approximate solution and, in one particular case, the exact solution of these equations were obtained for the equilibrium state. Detailed analysis of equilibrium particle distribution over the mass m was performed for an exponential coagulation kernel = 0 m and an degenerated disintegration kernel = 12, in which the disintegration frequency is an exponential function of aggregate mass 1 = 0 m + , and the probability of the fragment detachment from an aggregate is independent ofm and decreases exponentially with an increase in mass of a fragment: 2 = 0 –1exp(–/0). The equilibrium distribution was shown to exist only at > 0, and in particular, it is described at = = 1 by the f() = 00 –1exp(–/0) and F(m) = Cx –1(x + 1)2 – 1 e x functions for the particles of fine and coarse fractions (x = m/m 0, = m 0/0, m 0 and 0 are the characteristic masses of coarse and fine fractions, respectively). The particle distribution for the fine fraction at 1 is well approximated by the Gaussian distribution exp[–(mm 0)2/(4–1 m 00)].  相似文献   

16.
Treatment of Ru3(CO)12 with dpphSe2 (dpph = 1,6-bis(diphenylphosphino)hexane) in refluxing toluene in the presence of Me3NO afforded two new compounds, Ru3(CO)7(-CO)(3-Se)(-dpph) (1) and Ru3(CO)7(3-Se)2(-dpph) (2). A similar reaction of Ru3(CO)12 with dpppeSe2 (dpppe = 1,5-bis(diphenylphosphino)pentane) gave exclusively Ru3(CO)7(3-Se)2(-dpppe) (3). Treatment of Ru3(CO)12 with dpphS2 and dpppeS2 at 110°C in the presence of Me3NO afforded Ru3(CO)7(3-S)2(-dpph) (4) and Ru3(CO)7(3-S)2(-dpppe) (5), respectively. Reactions of Fe3(CO)12 with dpphSe2 and dpppeSe2, under identical conditions, afforded Fe3(CO)7(3-Se)2(-dpph) (6) and Fe3(CO)7(3-Se)2(-dpppe) (7), respectively. Compounds 1–7 were characterized spectroscopically and the molecular structures of compounds 1–4 were determined by single crystal X-ray crystallography. The core of 1 contains an equilateral triangle of ruthenium atoms with one capping selenium, one bridging dpph, one doubly bridging carbonyl and seven terminal carbonyl ligands. Complexes 2–4 have a square-pyramidal structure with two metal and two chalcogenide atoms alternating in the basal plane and the third metal atom at the apex of the pyramid, and belong to the family of well-known nido clusters with seven skeletal electron pairs.  相似文献   

17.
Triruthenium imido cluster Ru3(CO)10(3-NPh)(1) reacts with tungsten hydride LW(CO)3H to afford heterometallic imido clusters LWRu2(CO)8(-H) (3-NPh), L=Cp, (IIa); L=Cp*, (IIb), whereas the respective phosphinidene complexes LWRu2(CO)8(-H)(3-PPh), L=Cp, (IXa); L=Cp*, (IXb), were generated via reaction of Ru3(CO)10(-H)(-PPh2) with CpW(CO)3H and with CP*W(CO)3H followed by thermolysis in the presence of carbon monoxide. Their molecular structure, solution dynamics, and the subsequent reaction with hexafluoro-2-butyne are presented.  相似文献   

18.
The lithium complex with the acenaphthylene dianion [Li(Et2O)2]22:3[Li(3:3-C12H8)]2 (1) was synthesized by the reduction of acenaphthylene with lithium in diethyl ether. According to the X-ray diffraction data, compound 1 has a reverse-sandwich structure with the bridging dianion 2:3[Li(3:3-C12H8)]2. Two lithium atoms in complex 1 are located between two coplanar acenaphthylene ligands of the 2:3[Li(3:3-C12H8)]2 2– dianion and are 3-coordinated with the five- and six-membered rings. The lanthanum complex with the acenaphthylene dianion [LaI2(THF)3]2(2-C12H8) (2) was synthesized by the reduction of acenaphthylene in THF with the lanthanum(iii) complex [LaI2(THF)3]2(2-C10H8) containing the naphthalene dianion. The 1H NMR spectrum of complex 2 in THF-d8 exhibits four signals of the acenaphthylene dianion, whose strong upfield shifts compared to those of free acenaphthylene indicate the dianionic character of the ligand. The highest upfield chemical shift belongs to the proton bound to the C atom on which, according to calculation, the maximum negative charge is concentrated.  相似文献   

19.
The reaction of the anion [Os4(-H)3(CO)12] with one equivalent of Au(PPh3)Cl affords [Os4Au(-H)3(CO)12(PPh3)] (1), the structure of which was established by single crystal X-ray analysis. Its electrochemical behavior and catalytic properties are also reported. This bimetallic cluster catalyses the oxidative carbonylation of aniline to give methyl phenylcarbamate in methanol with good conversion and selectivity compared to the homometallic [Os4(-H)4(CO)12] cluster.  相似文献   

20.
Diphenylphosphine oxidatively adds to the ReRe bonds of Re2 X 4(-dppm)2 (X=Cl or Br; dppm=Ph2PCH2PPh2) and Re2Cl4(-dpam)2 (dpam=Ph2AsCH2AsPh2) to afford the dirhenium(III) complexes Re2(-X)(-PPh2)HX 3(-LL)2. The dppm complexes have also been prepared from the reactions of Re2(-O2CCH3)X 4(-dppm)2 with Ph2PH, and a similar strategy has been used to prepare Re2(-Cl)(-PPh2)HCl3(-dmpm)2 (dmpm=Me2PCH2PMe2) from Re2(-O2CCH3)Cl4(dmpm)2. Phenylphosphine likewise reacts with Re2 X 4(-dppm)2 to give Re2(-X)(-PHPh)HX 3(-dppm)2. An X-ray crystal structure determination on Re2(-Cl)(-PPh2)HCl3(-dppm)2 confirms its edge-shared bioctahedral structure. This complex crystallizes in the space group (No. 148) witha=21.699(3) Å, =84.50(4)°,V=10084(5) Å3, andZ=6. The structure was refined toR=0.049 (R w 0.069) for 5770 data withI>3.0(I). The Re-Re distance is 2.5918(7) Å. Oxidation of the bromide complex Re2(-Br)(-PPh2)HBr3(-dppm)2 with NOPF6 produces the unusual dirhenium(III, II) cation [Re2(-H)(-Br)[P(O)Ph2]Br2(NO)(-dppm)2]+ which has been structurally characterized as its perrhenate salt, [Re2(-H)(-Br)[P(O)Ph2]Br2(NO)(-dppm)2]ReO4 · 2CH2Cl2. This complex crystallizes in the space group (No. 2) witha=14.187(7) Å,b=16.419(5) Å,c=16.729(5) Å, =98.76(2)°, =110.11(3)°, =104.66(3)°,V=3414(6) Å3,Z=2. The structure was refined toR=0.040 (R w =0.051) for 5736 data withI>3.0(I). The presence of a phosphorus-bound [P(O)Ph2] ligand, a linear nitrosyl and a bridging hydrido ligand has been confirmed. The Re-Re distance is 2.6273(8) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号