首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Wentian Chen 《中国物理 B》2022,31(4):44304-044304
Photoacoustic imaging is a potential candidate for in vivo brain imaging, whereas, its imaging performance could be degraded by inhomogeneous multi-layered media, consisted of scalp and skull. In this work, we propose a low-artifact photoacoustic microscopy (LAPAM) scheme, which combines conventional acoustic-resolution photoacoustic microscopy with scanning acoustic microscopy to suppress the reflection artifacts induced by multi-layers. Based on similar propagation characteristics of photoacoustic signals and ultrasonic echoes, the ultrasonic echoes can be employed as the filters to suppress the reflection artifacts to obtain low-artifact photoacoustic images. Phantom experiment is used to validate the effectiveness of this method. Furthermore, LAPAM is applied for in-vivo imaging mouse brain without removing the scalp and the skull. Experimental results show that the proposed method successfully achieves the low-artifact brain image, which demonstrates the practical applicability of LAPAM. This work might improve the photoacoustic imaging quality in many biomedical applications which involve tissues with complex acoustic properties, such as brain imaging through scalp and skull.  相似文献   

2.
The threshold filter is a frequently used technique in ultrasound B-scan to reject the small echoes contributed from backscattering that blur the tissue interface and reduce the image contrast. Note that using the threshold based on one value would simultaneously destroy local waveform features of the reflection echoes with amplitudes larger than threshold value. To resolve this problem, we developed an adaptive threshold filter based on the noise-assisted empirical mode decomposition (EMD). Computer simulations at 7.5 MHz using a single-element transducer with a bandwidth of 60% and a pulselength of 0.5 μs were carried out to explore the feasibility of the algorithm. Image measurements on the carotid artery using a 7.5 MHz, 128 elements, 1D linear array transducer with the same characteristics as those in simulations were used to verify the performance of the algorithm in practice. Compared to the result from the conventional threshold technique, the adaptive threshold filter is able to successfully suppress the smaller backscattering signals without changing the local waveform features of the preserved significant echoes due to refection.  相似文献   

3.
Harmonic imaging was originally developed for microbubble contrast agents in the early 90s under the assumption that tissue is linear and all harmonic echoes are generated by the bubbles. In fact, tissue, like bubbles, is a nonlinear medium. Whereas the harmonic echoes from bubbles have their origins in nonlinear scattering, those from tissue are a result of nonlinear propagation. The clinical benefits of tissue harmonic imaging are reduced reverberation noise and overall clutter level, improved border delineation, increased contrast resolution, and reduced phase aberration artifacts. To a large extent these benefits are explained by the properties of nonlinear propagation of the transmitted ultrasonic pulses in the tissue.  相似文献   

4.
Sicard R  Goyette J  Zellouf D 《Ultrasonics》2002,40(1-8):727-732
A Fourier domain numerical reconstruction technique has been created in order to eliminate the time spread of Lamb wave signals caused by their dispersive nature. This method allows a good time compaction of the echoes obtained from a Lamb wave inspection. In a pulse-echo setup, reflection peaks coming from targets located close one from each other that could not be separated or seen within raw signals are identified using this procedure. The utility of this new technique goes from simple signal analysis to imaging purposes such as the improvement of B-scan images or SAFT processing. It has been tested in three different situations with the S0 mode generated in a frequency bandwidth where it is highly dispersive. The reconstruction of a pure reflection coming from the edge of a plate, the separation of the echoes resulting from reflections on two targets near one each other and the effects of the presence of an obstacle between the emitter and the receiver are treated. Good results are obtained for every case studied.  相似文献   

5.
低能X射线工业CT图像杯状伪影校正   总被引:1,自引:0,他引:1       下载免费PDF全文
为了去除X射线工业CT图像中的杯状伪影,提高CT图像的识别能力和量化分析精度,提出一种基于分度投影和权函数的射束硬化校正方法。首先分析得出杯状伪影主要是由X射线连续谱穿过被测物体过程中出现的射束硬化所导致。然后扫描阶梯模型,采集不同厚度下的投影数据并求出线衰减系数,通过拟合曲线,得到硬化模型函数和权函数校正模型函数,并确定权函数。接着,扫描被测圆柱形工件,采集不同分度下的投影数据。最后,针对每一个分度投影数据,采用权函数与当前分度投影数据乘积的方法进行硬化校正。对含有杯状伪影的实际CT图像进行了校正实验,结果表明,与多项式拟合法相比,该方法校正后的灰度图像没有放大噪声,且信噪比提高3.29%,有效地消除了杯状伪影,同时较好地保留了图像边界细节。  相似文献   

6.
应英子  马力  郭圣明 《中国物理 B》2011,20(5):54301-054301
In active sonar operation,the presence of background reverberation and the low signal-to-noise ratio hinder the detection of targets.This paper investigates the application of single-channel monostatic iterative time reversal to mitigate the difficulties by exploiting the resonances of the target.Theoretical analysis indicates that the iterative process will adaptively lead echoes to converge to a narrowband signal corresponding to a scattering object’s dominant resonance mode,thus optimising the return level.The experiments in detection of targets in free field and near a planar interface have been performed.The results illustrate the feasibility of the method.  相似文献   

7.
T2-weighted carotid artery images acquired using the turbo spin-echo (TSE) sequence frequently suffer from motion artifacts due to respiration and blood pulsation. The possibility of using HASTE sequence to achieve motion-free carotid images was investigated. The HASTE sequence suffers from severe blurring artifacts due to signal loss in later echoes due to T2 decay. Combining HASTE with parallel acquisition (PHASTE) decreases the number of echoes acquired and thus effectively reduces the blurring artifact caused by T2 relaxation. Further improvement in image sharpness can be achieved by performing T2 decay compensation before reconstructing the PHASTE data. Preliminary results have shown successful suppression of motion artifacts with PHASTE imaging. The image quality was enhanced relative to the original HASTE image, but was still less sharp than a non-motion-corrupted TSE image.  相似文献   

8.
By varying the sound-absorption treatments in a simulated classroom, experimental results were compared with analytical and computer predictions of reverberation time. Analytical predictions were made with different absorption exponents, which are the result of different weighting procedures involving room surface areas and the sound-absorption coefficients. Sound scattering was found to influence measured reverberation times. With the amount of sound scattering provided, more accurate analytical predictions were obtained with absorption exponents that give reverberation times longer than those obtained with the Sabine absorption exponent, which consistently underpredicted reverberation times. However, none of the absorption exponents could be singled out as more adequate because of similar average accuracy. Computer predictions of reverberation time were accomplished with two commercially available ray-based programs, RAYNOISE 3.0 and ODEON 2.6, with specular and calibrated diffuse reflection procedures. Neither type of procedure, in either program, was more accurate than the best analytical predictions. With RAYNOISE, neither the specular nor the calibrated diffuse reflection procedure could be singled out as more adequate. For ODEON, the calibrated diffuse reflection procedure gave consistently more accurate predictions than its specular reflection procedure, with the best accuracy of the computer predictions.  相似文献   

9.
Urban MW  Alizad A  Fatemi M 《Ultrasonics》2011,51(6):689-696
Vibro-acoustography is an ultrasound based imaging modality that can visualize normal and abnormal soft tissue through mapping the acoustic response of the object to a harmonic radiation force at frequency Δf induced by focused ultrasound. In this method, the ultrasound energy is converted from high ultrasound frequencies to a low acoustic frequency (acoustic emission) that is often two orders of magnitude smaller than the ultrasound frequency. The acoustic emission is normally detected by a hydrophone. Depending on the setup, this low frequency sound may reverberate by object boundaries or other structures present in the acoustic paths before it reaches the hydrophone. This effect produces an artifact in the image in the form of gradual variations in image intensity that may compromise image quality. The use of tonebursts with finite length yields acoustic emission at Δf and at sidebands centered about Δf. Multiple images are formed by selectively applying bandpass filters on the acoustic emission at Δf and the associated sidebands. The data at these multiple frequencies are compounded through both coherent and incoherent processes to reduce the acoustic emission reverberation artifacts. Experimental results from a urethane breast phantom are described. The coherent and incoherent compounding of multifrequency data show, both qualitatively and quantitatively, the efficacy of this reverberation reduction method. This paper presents theory describing the physical origin of this artifact and use of image data created using multifrequency vibro-acoustography for reducing reverberation artifacts.  相似文献   

10.
Two effects of reverberation on the identification of consonants were evaluated for ten normal-hearing subjects: (1) the overlap of energy of a preceding consonant on the following consonant, called "overlap-masking"; and (2) the internal temporal smearing of energy within each consonant, called "self-masking." The stimuli were eight consonants/p,t,k,f,m,n,l,w/. The consonants were spoken in /s-at/context (experiment 1) and generated by a speech synthesizer in /s-at/ and/-at/contexts (experiment 2). In both experiments, identification of consonants was tested in four conditions: (1) quiet, without degradations; (2) with a babble of voices; (3) with noise that was shaped like either natural or synthetic/s/ for the two experiments, respectively; and (4) with room reverberation. The results for the natural and synthetic syllables indicated that the effect of reverberation on identification of consonants following/s/ was not comparable to masking by either the /s/ -spectrum-shaped noise or the babble. In addition, the results for the synthetic syllables indicated that most of the errors in reverberation for the /s-at/context were similar to a sum of errors in two conditions: (1) with /s/-shaped noise causing overlap masking; and (2) with reverberation causing self-masking within each consonant.  相似文献   

11.
Navigator echoes provide a means with which to remove motion artifacts from diffusion-weighted images obtained using any multishot imaging technique. However, residual motion artifact is often present in the corrected images rendering the technique unreliable. It is shown that velocity-compensated diffusion sensitization when used in tandem with a navigator echo further reduces the degree of residual motion artifacts present in the corrected images and improves the reliability and clinical utility of the technique. This is demonstrated by applying a method for quantification of motion artifact to brain images of healthy volunteers scanned using both conventional (Stejskal-Tanner) and velocity-compensated gradient sensitization. Other factors affecting the efficacy of the navigator echo technique, such as brain pulsatile motion, gradient b factor, and navigator echo signal-to-noise ratio, are also discussed.  相似文献   

12.
A unified model for reverberation and submerged target scattering in a stratified medium is developed from wave theory. The advantage of the unified approach is that it enables quantitative predictions to be made of the target-echo-to-reverberation ratio in an ocean waveguide. Analytic expressions are derived for both deterministic and stochastic scattering from the seafloor and subseafloor. Asymptotic techniques are used to derive expressions for the scattering of broadband waveforms from distant objects or surfaces. Expressions are then obtained for the scattered field after beamforming with a horizontal line array. The model is applied to problems of active detection in shallow water. Sample calculations for narrow-band signals indicate that the detection of submerged target echoes above diffuse seafloor reverberation is highly dependent upon water column and sediment stratification as well as array aperture, source, receiver, and target locations, in addition to the scattering properties of the target and seafloor. The model is also applied to determine the conditions necessary for echo returns from discrete geomorphologic features of the seafloor and subseafloor to stand prominently above diffuse seafloor reverberation. This has great relevance to the geologic clutter problem encountered by active sonar systems operating in shallow water, as well as to the remote sensing of underwater geomorphology.  相似文献   

13.
Greenwood MS  Adamson JD  Bond LJ 《Ultrasonics》2006,44(Z1):e1031-e1036
We have developed an on-line computer-controlled sensor, based on ultrasound reflection measurements, to determine the product of the viscosity and density of a liquid or slurry for Newtonian fluids and the shear impedance of the liquid for non-Newtonian fluids. A 14 MHz shear wave transducer is bonded to one side of a 45-90 degrees fused silica wedge and the base is in contract with the liquid. Twenty-eight echoes were observed due to the multiple reflections of an ultrasonic shear horizontal (SH) wave within the wedge. The fast Fourier transform of each echo was obtained for a liquid and for water, which serves as the calibration fluid, and the reflection coefficient at the solid-liquid interface was obtained. Data were obtained for 11 sugar water solutions ranging in concentration from 10% to 66% by weight. The viscosity values are shown to be in good agreement with those obtained independently using a laboratory viscometer. The data acquisition time is 14s and this can be reduced by judicious selection of the echoes for determining the reflection coefficient. The measurement of the density results in a determination of the viscosity for Newtonian fluids or the shear wave velocity for non-Newtonian fluids. The sensor can be deployed for process control in a pipeline, with the base of the wedge as part of the pipeline wall, or immersed in a tank.  相似文献   

14.
In the present study an automatic algorithm for detection and contouring of multiple sclerosis (MS) lesions in brain magnetic resonance (MR) images is introduced. This algorithm automatically detects MS lesions in axial proton density, T2-weighted, gadolinium enhanced, and fast fluid attenuated inversion recovery (FLAIR) brain MR images. Automated detection consists of three main stages: (1) detection and contouring of all hyperintense signal regions within the image; (2) partial elimination of false positive segments (defined herein as artifacts) by size, shape index, and anatomical location; (3) the use of an artificial neural paradigm (Back-Propagation) for final removal of artifacts by differentiating them from true MS lesions. The algorithm was applied to 45 images acquired from 14 MS patients. The algorithm’s sensitivity was 0.87 and the specificity 0.96. In 34 images, 100% of the lesions were detected. The algorithm potentially may serve as a useful preprocessing tool for quantitative MS monitoring via magnetic resonance imaging.  相似文献   

15.
针对含噪图像增强问题,提出一种基于小波域三状态隐马尔可夫树模型的方法,采用三状态的高斯混合模型逼近小波系数的分布,不需要设定精确的阈值,依据期望最大算法训练得到的每个系数所属状态的后验概率,将系数区分为噪声系数、弱边缘系数和强边缘系数,然后通过抑制噪声系数,增强细节特征系数来达到对含噪图像增强的目的,并引入循环平移策略避免人工失真.通过对含噪的标准图像和人脑核磁共振图像进行仿真实验,并与几种经典的图像增强方法作视觉上的对比和定量分析.实验结果表明,本文所提出的方法具有很好的鲁棒性,在突出了图像中更多的细节信息的同时,可以有效抑制噪声.  相似文献   

16.
Seabed geoacoustic variability is driven by geological processes that occur over a wide spectrum of space-time scales. While the acoustics community has some understanding of horizontal fine-scale geoacoustic variability, less than O(10(0)) m, and large-scale variability, greater than O(10(3)) m, there is a paucity of data resolving the geoacoustic meso-scale O(10(0)-10(3)) m. Measurements of the meso-scale along an ostensibly "benign" portion of the outer shelf reveal three classes of variability. The first class was expected and is due to horizontal variability of layer thicknesses: this was the only class that could be directly tied to seismic reflection data. The second class is due to rapid changes in layer properties and/or boundaries, occurring over scales of meters to hundreds of meters. The third class was observed as rapid variations of the angle/frequency dependent reflection coefficient within a single observation and is suggestive of variability at scales of meter or less. Though generally assumed to be negligible in acoustic modeling, the second and third classes are indicative of strong horizontal geoacoustic variability within a given layer. The observations give early insight into possible effects of horizontal geoacoustic variability on long-range acoustic propagation and reverberation.  相似文献   

17.
光学相干层析图像层状结构的增强与定量测量   总被引:3,自引:0,他引:3  
光学相干层析(OCT)成像技术对于眼底等层状组织的定量测量有赖于光学相干层析图像中层状结构的提取。为了对原始光学相干层析图像进行预处理以有效地去除图像中的噪声及散斑、增强图中的层状结构,并更好地保护图像中的层状结构,进而更准确地定量测量图像中有重要意义的层状结构的光程信息,提出在相干增强各向异性扩散(CED)算法中引入二阶导数项以控制沿相干方向的扩散强度,并将引入二阶导数项的相干增强各向异性扩散算法应用于不同样品的光学相干层析图像。结合在预处理后图像中层状结构位置的查找结果与样品的折射率信息,实现了对光学相干层析图像中有重要意义的层状结构厚度的定量测量。实验结果表明,使用引入二阶导数项的相干增强各向异性扩散算法对光学相干层析图像预处理有利于对图中重要层状结构的更准确测量。  相似文献   

18.
浅海海底反射系数幅值参数的反演   总被引:1,自引:0,他引:1       下载免费PDF全文
理论分析了一种通过混响强度衰减特性获取海底反射系数的幅值参数的方法.将海底反射系数的幅值参数和相位参数引入到全波动混响模型中,为海底反射系数的反演提供理论基础。理论分析和数值仿真表明,在小掠射角条件下,利用混响强度衰减特性反演海底反射系数幅值参数的可行性和准确性。该反演方法只需要输入4个变量:本地混响强度的衰减特性,反射系数的相位参数,海深以及海深处的声速,同时要求混响数据具有一定的混响噪声比(大于6 dB)才能够使反演结果准确可信。根据本地静态混响实验数据成功反演得到海底反射系数的幅值参数.   相似文献   

19.
The geoacoustic properties of marine sediments, e.g., bulk density and compressional velocity, commonly exhibit large variations in depth near the water-sediment interface. This layer, termed the transition layer, is typically of 0(10(-1)-10(0)) m in thickness. Depth variations within the transition layer may have important implications for understanding and modeling acoustic interaction with the seabed, including propagation and reverberation. In addition, the variations may contain significant clues about the underlying depositional or erosional processes. Characteristics of the transition layer can be measured directly (e.g., coring) or remotely. Remote measurements have the advantage of sampling without disturbing the sediment properties; they also have the potential to be orders of magnitude faster and less expensive than direct methods. It is shown that broadband seabed reflection data can be exploited to remotely obtain the depth dependent density and velocity profiles in the transition layer to high accuracy. A Bayesian inversion approach, which accounts for correlated data errors, provides estimates and uncertainties for the geoacoustic properties. These properties agree with direct (i.e., core) measurements within the uncertainty estimates.  相似文献   

20.
A simple method to detect audible echoes is proposed as an objective criterion for room acoustics. This method evaluates the perceptibility of sound reflections that are generated by an impulsive sound source and identifies from reflectograms harmful reflections perceived as echoes. Particularly with this method, the masking effect of reverberation is taken into consideration, which cannot be treated sufficiently by the existing objective criteria. The applicability to room acoustical design is verified by evaluating the impulse responses measured in real halls where audible echoes occurred. It is shown that the proposed method detects audible echoes at an accuracy of more than 90% and would be suitable for practical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号