首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The radiowave dielectric properties of aqueous heterogeneous systems during the complexation of charged polyions and oppositely charged liposomal particles have been measured in a wide frequency range, between 100 Hz and 2 GHz. The formation of a polyion-liposome complex driven by the correlated polyion adsorption at the particle surface implies two concomitant effects referred to as reentrant condensation and charge inversion. Both of them are governed by electrostatic interactions and there is now strong evidence, based on experiments and simulations, that counterion release is the driving force of the aggregation process. From this point of view, dielectric technique may offer a suitable tool in the investigation of the structural properties of these aggregates. In spite of the fact that interaction of polyions with oppositely charged surfaces was extensively experimentally investigated, there are no papers concerning the dielectric properties during the polyion-induced aggregation. To get an insight into this important topic, the authors present here an extensive set of radiowave dielectric measurements of liposomal vesicle aqueous suspensions where the liposome aggregation was induced by an oppositely charged polyion. The aggregation was followed from the beginning, when most of the isolated liposomes predominate, up to the formation of polyion-coated liposomes of inverted charge, crossing the isoelectric condition, where large, almost neutral, aggregates appear. The authors describe the observed dielectric dispersions as due to counterion polarization in the adjacency of the liposome and liposome aggregate surface, primarily governed by the zeta potential, according to the standard electrokinetic model.  相似文献   

2.
Interactions of oppositely charged macroions in aqueous solution give rise to intriguing aggregation phenomena, resulting in finite-size, long-lived clusters, characterized by a quite narrow size distribution. Particularly, the adsorption of highly charged linear polyelectrolytes on oppositely charged colloidal particles is strongly correlated and some short-range order arises from competing electrostatic interactions between like-charged polymer chains (repulsion) and between polymer chains and particle surface (attraction). In these systems, in an interval of concentrations around the isoelectric point, relatively large clusters of polyelectrolyte-decorated particles form. However, the mechanisms that drive the aggregation and stabilize, at the different polymer/particle ratios, a well-defined size of the aggregates are not completely understood. Nor is clear the role that the correlated polyion adsorption plays in the aggregation, although the importance of "patchy interactions" has been stressed as the possible source of attractive interaction term between colloidal particles. Different models have been proposed to explain the formation of the observed cluster phase. However, a central question still remains unanswered, i.e., whether the clusters are true equilibrium or metastable aggregates. To elucidate this point, in this work, we have investigated the effect of the temperature on the cluster formation. We employed liposomes built up by DOTAP lipids interacting with a simple anionic polyion, polyacrylate sodium salt, over an extended concentration range below and above the isoelectric condition. Our results show that the aggregation process can be described by a thermally activated mechanism.  相似文献   

3.
Complexation of polyions with oppositely charged spherical liposomes has been investigated by means of dynamic light scattering measurements and a well-defined reentrant condensation has been observed. The phase diagram of charge inversion, recently derived [T. T. Nguyen and B. I. Shklovskii, J. Chem. Phys. 115, 7298 (2001)] for the complexation of DNA with charged spherical macroions, has been employed in order to define the boundaries of the region where polyion-liposome complexes begin to condense, forming larger aggregates, and where aggregates dissolve again, towards isolated polyion-coated-liposome complexes. A reasonable good agreement is observed in the case of complexes formed by negatively charged polyacrylate sodium salt polyions and liposomes built up by cationic lipids (dioleoyltrimethylammoniumpropane), in an extended liposome concentration range.  相似文献   

4.
We report on the time evolution of the aggregation behaviour of cationic liposome-polyelectrolyte complexes studied by means of dynamic light scattering technique. Pure dioleoyltrimethilammoniumpropane (DOTAP) and mixed DOTAP-dipalmitoylphosphatidylcholine (DPPC) liposomes in polyacrylate sodium salt aqueous solutions in a wide concentration range have been investigated and the size and size distributions of the resulting aggregates evaluated from the intensity autocorrelation function of the scattered light. Under appropriate conditions, we found two discrete aggregation regimes, resulting in two different structural arrangements, whose time evolution depends on the charge ratio and the polyelectrolyte molecular weight. A first small component of average size in the 100-500 range nm coexists with a larger component, whose typical size increases with time, up to some micrometers. The cluster growth from a single liposome, 70 nm in diameter, to the formation of polymer-coated liposome aggregates has been briefly discussed in the light of steric stabilization of colloids. Moreover, it has been found that the kinetics of aggregation of the larger, time-dependent, component follows a dynamical scaling within the diffusion-limited cluster aggregation (DLCA) regime. The understanding of structures resulting from interactions between polyelectrolytes with oppositely charged liposomes may help towards formulation of "lipoplexes" (cationic lipid-DNA complexes) to use as non-viral gene carriers.  相似文献   

5.
We have investigated the formation of a cluster phase in low-density colloidal systems formed by charged solid charged particles stuck together by an oppositely charged polyion. In analogy with what we have previously observed in the case of soft charged particles, also in this case the same basic phenomenology occurs, consisting of the presence of the two well-known characteristic phenomena of this class of colloids, that is, reentrant condensation and charge inversion. With the aim of comparing the cluster formation in both soft and solid charged particles, we have, in previous works, employed cationic liposomes (soft particles, lipidic vesicles built up by dioleoyltrimethylammonium propane [DOTAP] lipid) and, in the present work, polystyrene particles (solid particles) covered by the same lipidic bilayer as the one of the soft particles, so that the two classes of particles share electrostatic interactions of the same nature. These charged particle clusters, where the single aggregating particles maintain their integrity without undergoing a structural rearrangement, join to a class of different aggregated structures (lamellar or inverse hexagonal phases) observed as well in the polyion-induced aggregation of oppositely charged mesoscopic particles, in particular, lipidic vesicles. Our results show that the formation of relatively large, equilibrium clusters of particles which maintain their integrity, stuck together by a polyion which acts as an electrostatic glue, is one of the many facets of the complex phenomenology underlying the interactions of charged particles with oppositely charged objects.  相似文献   

6.
We have studied the complexation process taking place in cationic liposomes in the presence of anionic polyelectrolytes, in the polyion concentration range from the dilute to the concentrated regime, by combining dynamic light scattering and transmission electron microscopy techniques. We employed as the cationic lipid a two-chained amphiphile (Dioleoyltrimethylammoniumpropane) and sodium polyacrylate salt as the flexible anionic polyelectrolyte. The results evidence a variety of different structures, mainly depending on the liposome-polyion charge ratio, whose peculiar dynamical and structural features are briefly described. In particular, three different polyion concentration regions are found, within which a monomodal or bimodal distribution of aggregates, with a well-defined time evolution, is present. At low polyion content, close to the isoelectric point, large aggregates are formed, deriving from the collapse of the liposomal bilayers into extended charged surfaces, where adsorbed polyions form a two-dimensional strongly correlated array and organize into a two-dimensional Wigner liquid. At high polyion content, above a critical concentration, the size distributions of the complexes are clearly bimodal and a large-component aggregate, continuously increasing with time, coexists with a population of smaller-size aggregates. At an intermediate polyion concentration, spherical, small-size vesicular structures are reformed, connected in a network by polymer chains. A brief discussion tries to summarize our results into a consistent picture.  相似文献   

7.
The assembly and complexation of oppositely charged colloids are important phenomena in many natural and synthetic processes. Liposome-nanoparticle assemblies (LNAs) represent an interesting hybrid system that combines "soft" and "hard" colloidal materials. This work describes the formation and characterization of gel-phase LNAs formed by the binding of anionic superparamagnetic iron oxide (SPIO) nanoparticles to cationic dipalmitoylphosphatidylcholine (DPPC)/dipalmitoyltrimethylammonium propane (DPTAP) liposomes. Particles were examined with hydrodynamic diameters below (16 nm) and above (30 nm) the cutoff reported for supported lipid bilayer formation. LNA formation with 16 nm particles was entropically driven and particles bound individually to yield "decorated" structures. In this case, increasing nanoparticle concentration yielded colloidal LNA aggregates and eventual charge inversion. In contrast, LNA formation with 30 nm particles was enthalpically driven, and the nanoparticles aggregated at the bilayer interface. These aggregates led to significant LNA aggregation and large bilayer sheets due to liposome rupture despite minimal charge screening of the liposome surface. In this case SLBs were present, but these structures were not dominant. Differences in LNA structure were also revealed through the lipid phase transition behavior. This work infers size-dependent nanoparticle binding and LNA formation mechanisms that can be used to tailor colloidal and bilayer properties. Analogies are made to polyelectrolyte patch charge heterogeneities and DNA complexation with cationic liposomes.  相似文献   

8.
A quick and convenient route to prepare a highly viscoelastic mixture of two oppositely charged polyelectrolytes is presented. The investigation was essentially performed at a fixed total polyelectrolyte concentration. The phase behaviour was studied at varying ratios between the two oppositely charged polyions. The mixtures phase separated associatively at mixing ratios in the vicinity of overall charge neutrality, while by screening the attractive forces with NaCl the precipitate could be dissolved. At certain mixing ratios off charge neutrality the mixtures were highly viscoelastic single-phase solutions in the absence of screening electrolyte. When NaCl was added to such a solution the viscoelasticity decreased strongly since the attractive forces between the oppositely charged polyions were screened. Therefore, by contacting an initially salt free mixture of polyions with a brine solution of known concentration, the diffusion of salt into the polyion matrices could be monitored by following the rheology of the mixture as a function of the contact time. It is shown that the transport of NaCl inside the polyion matrices was diffusion controlled.  相似文献   

9.
The adsorption of sodium poly(4-styrene sulfonate) on oppositely charged beta-FeOOH particles is studied by electrooptics. The focus of this paper is on the release of condensed counterions from adsorbed polyelectrolyte upon surface charge overcompensation. The fraction of condensed Na+ counterions on the adsorbed polyion surface is estimated according to the theory of Sens and Joanny and it is compared with the fraction of condensed counterions on nonadsorbed polyelectrolyte. The relaxation frequency of the electrooptical effect from the polymer-coated particle is found to depend on the polyelectrolyte molecular weight. This is attributed to polarization of the layer from condensed counterions on the polyion surface, being responsible for creation of the effect from particles covered with highly charged polyelectrolyte. The number of the adsorbed chains is calculated also assuming counterion condensation on the adsorbed polyelectrolyte and semiquantative agreement is found with the result obtained from the condensed counterion polarizability of the polymer-coated particle. Our findings are in line with theoretical predictions that the fraction of condensed counterions remains unchanged due to the adsorption of highly charged polyelectrolyte onto weakly charged substrate.  相似文献   

10.
We report a nonlocal density functional theory (NLDFT) for polyelectrolyte solutions within the primitive model; i.e., the solvent is represented by a continuous dielectric medium, and the small ions and polyions by single and tangentially connected charged hard spheres, respectively. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for hard-sphere repulsion, an extended first-order thermodynamic perturbation theory for chain connectivity, and a quadratic functional Taylor expansion for electrostatic correlations. With the direct and cavity correlation functions of the corresponding monomeric systems as inputs, the NLDFT predicts the segment-level microscopic structures and adsorption isotherms of polyelectrolytes at oppositely charged surfaces in good agreement with molecular simulations. In particular, it faithfully reproduces the layering structures of polyions, charge inversion, and overcharging that cannot be captured by alternative methods including the polyelectrolyte Poisson-Boltzmann equation and an earlier version of DFT. The NLDFT has also been used to investigate the influences of the small ion valence, polyion chain length, and size disparity between polyion segments and counterions on the microscopic structure, mean electrostatic potential, and overcharging in planar electric double layers containing polyelectrolytes.  相似文献   

11.
In this note, we present a set of electrical conductivity measurements of polyion-induced liposome aggregate aqueous suspensions that supports evidence for the existence of a cluster phase in low-density colloidal systems. Heavily NaCl-loaded liposomes, dispersed in a low-conductivity aqueous solution, are forced by electrostatic interactions with oppositely charged polyions to build up into individual aggregates, where the single vesicles maintain their integrity and, upon an external force, are able to release their ionic content. The conductivity data, within the effective medium approximation theory for heterogeneous systems, are in agreement with the picture of a suspension built up by clusters of vesicles which are able to preserve their content from the external medium. This finding opens new possibilities in multicompartment drug delivery techniques.  相似文献   

12.
Polyelectrolyte (PE) complexes (PECs) between long polycation poly(methacryloyloxyethyl dimethylbenzylammonium chloride) and short polyanion polystyrene sulfonic acid adsorbed onto mica were studied by atomic force microscopy. If one component is taken in excess, then a rapid coupling of the oppositely charged polyions first leads to the formation of nonequilibrium structures when collapsed PEC particles coexist with unreacted PEs molecules. The equilibrium PEC particles possess micelle-like core-shell morphology if the short polyion is taken in excess. When long PE is given in excess, equilibrium PECs are stabilized by wrapping the long polyion around hydrophobic segments of the PEC. We propose that transformations of initially formed nonequilibrium aggregates proceed through slow reactions (addition or/and substitution) of primary complexes with unreacted PEs chains, which finally leads to equilibrium PECs with optimized morphology. As expected, the mixing of oppositely charged PEs in a near-stoichiometric ratio leads to highly aggregated water-insoluble PECs.  相似文献   

13.
Cooperative coupling reaction between two opposite charged polyelectrolytes results in formation of polyelectrolyte complexes (IPEC). This reaction is very fast and diffusion controlled. Whether IPECs formed by linear polyions are soluble or limitary swellable in aqueous media is decided by their composition, namely, by a ratio of oppositely charged polyions as well as by a water phase composition (the nature and the concentration of a simple salt, pH, the presence and the concentration of organic additives etc.). The most important intrinsic property of IPECs is their ability to participate in interchange (exchange and substitution) reactions with competing polyions. The kinetics and the position of equilibria in these reactions are controlled by the low molecular salt concentration, the nature of small counterions, DP of interaction polyelectrolytes, as well as by their linear charge density. IPECs can be formed also by interacting linear and opposite charged networks. It is shown that linear polyelectrolytes dissolved in aqueous solution can penetrate unexpectedly fast into oppositely charged cross-linked polyelectrolyte gels to form “snake-in-cage” composites representing IPECs of corresponding polyion segments. It is proved that the mechanism consists in “relay-race” transfer of linear polyion segments from one segment of the polyelectrolyte network to the other via interpolyelectrolyte exchange reaction. The driving force for the fast transport of linear polyions into the gel is produced by coupling reaction between two polyelectrolytes proceeding on solution/gel interface.  相似文献   

14.
The self-recognition between oppositely charged polyelectrolyte-neutral diblock copolymers and aggregate formation is investigated by Monte Carlo simulations. Both matched lengths and charge numbers are critical conditions for self-recognition. The optimum self-recognition occurs between oppositely charged chains with matched charged block lengths and charge numbers. The size of aggregates increases, as the total length and the ratio of charged to neutral beads become larger. Polyelectrolyte networks were observed in some cases containing unmatched chains. The molecular configurations of the entire chains and of the charged and neutral blocks as well as the radial distribution functions of the charged beads are also investigated.  相似文献   

15.
We introduce an ultrasoft core model of interpenetrating polycations and polyanions, with continuous Gaussian charge distributions, to investigate polyelectrolyte aggregation in dilute and semi-dilute salt-free solutions. The model is studied by a combination of approximate theories (random phase approximation and hypernetted chain theory) and numerical simulations. The calculated pair structure, thermodynamics, phase diagram, and polyion dynamics of the symmetric version of the model (the "ultrasoft restricted primitive model" or UPRM) differ from the corresponding properties of the widely studied "restricted primitive model" (RPM) where ions have hard cores. At sufficiently low temperatures and densities, oppositely charged polyions form weakly interacting, polarizable neutral pairs. The clustering probabilities, dielectric behavior, and electrical conductivity point to a line of sharp conductor-insulator transitions in the density-temperature plane. At very low temperatures, the conductor-insulator transition line terminates near the top of a first order coexistence curve separating a high-density liquid phase from a low-density vapor phase. The simulation data hint at a tricritical behavior, reminiscent of that observed for the two-dimensional Coulomb gas, which contrasts with the Ising criticality of its three-dimensional counterpart, the RPM.  相似文献   

16.
In nonequimolar solutions of a cationic and an anionic surfactant, vesicles bearing a net charge can be spontaneously formed and apparently exist as thermodynamically stable aggregates. These vesicles can associate strongly with polymers in solution by means of hydrophobic and/or electrostatic interactions. In the current work, we have investigated the rheological and microstructural properties of mixtures of cationic polyelectrolytes and net anionic sodium dodecyl sulfate/didodecyldimethylammonium bromide vesicles. The polyelectrolytes consist of two cationic cellulose derivatives with different charge densities; the lowest charge density polymer contains also hydrophobic grafts, with the number of charges equal to the number of grafts. For both systems, polymer-vesicle association leads to a major increase in viscosity and to gel-like behavior, but the viscosity effects are more pronounced for the less charged, hydrophobically modified polymer. Evaluation of the frequency dependence of the storage and loss moduli for the two systems shows further differences in behavior: while the more long-lived cross-links occur for the more highly charged hydrophilic polymer, the number of cross-links is higher for the hydrophobically modified polymer. Microstructure studies by cryogenic transmission electron microscopy indicate that the two polymers affect the vesicle stability in different ways. With the hydrophobically modified polymer, the aggregates remain largely in the form of globular vesicles and faceted vesicles (polygon-shaped vesicles with largely planar regions). For the hydrophilic polycation, on the other hand, the surfactant aggregate structure is more extensively modified: first, the vesicles change from a globular to a faceted shape; second, there is opening of the bilayers leading to holey vesicles and ultimately to considerable vesicle disruption leading to planar bilayer, disklike aggregates. The faceted shape is tentatively attributed to a crystallization of the surfactant film in the vesicles. It is inferred that a hydrophobically modified polyion with relatively low charge density can better stabilize vesicles due to formation of molecularly mixed aggregates, while a hydrophilic polyion with relatively high charge density associates so strongly to the surfactant films, due to strong electrostatic interactions, that the vesicles are more perturbed and even disrupted.  相似文献   

17.
Photocatalytic systems often suffer from poor quantum yields due to fast charge recombination: The energy‐wasting annihilation of the photochemically created charge‐separated state. In this report, we show that the efficiency of photoinduced electron transfer from a sacrificial electron donor to positively charged methyl viologen, or to negatively charged 5,5′‐dithiobis(2‐nitrobenzoate), increases dramatically upon addition of charged phospholipid vesicles if the charge of the lipids is of the same sign as that of the electron acceptor. Centrifugation and UV/Vis titration experiments showed that the charged photosensitizers adsorb at the liposome surface, that is, where the photocatalytic reaction takes place. The increased photoelectron transfer efficiency in the presence of charged liposomes has been ascribed to preferential electrostatic interactions between the photosensitizer and the membrane, which prevents the formation of photosensitizer–electron‐acceptor complexes that are inactive towards photoreduction. Furthermore, it is shown that the addition of liposomes results in a decrease in photoproduct inhibition, which is caused by repulsion of the reduced electron acceptor by the photocatalytic site. Thus, liposomes can be used as a support to perform efficient photocatalysis; the charged photoproducts are pushed away from the liposomes and represent “soluble electrons” that can be physically separated from the place where they were generated.  相似文献   

18.
Nanoparticles taken into biological systems can have biological impacts through their interactions with cell membranes, accompanied by protein adsorption onto the nanoparticle surfaces, forming a so-called protein corona. Our current research aims to demonstrate that nanoscale protein aggregates behave like such nanoparticles with regard to the interaction with lipid membranes. In this study, the adsorption and disruption of the lipid membranes by protein aggregates were investigated using amyloid fibrils and nanoscale thermal aggregates of lysozyme. Both types of protein aggregates had disruptive effects on the negatively charged liposomes, similar to polycationic nanoparticles. Interestingly, adsorption of liposomes on the amyloid fibrils preceding disruption occurred even if the net charge of the liposome was zero, suggesting the importance of hydrophobic interactions in addition to electrostatic interactions. The results of the present study provide new insights into the biological impacts of nanoparticles in vivo.  相似文献   

19.
The effect of varying the fraction of charged monomer units of the polyion in aqueous polyion-oppositely charged surfactant complex salts has been investigated. The complex salts used were based on cetyltrimethylammonium (C16TA+) with three different polymeric counterions: poly(acrylate) (PA-) or poly(acrylate) copolymerized with either dimethylacrylamide (PA-/DAM) or N-isopropylamide (PA-/NIPAM). The charge density of the polyion was varied by either adding poly(acrylic) acid (PAA) to the C16TAPA complex salt (annealed charges) or by varying the fraction of uncharged units in the C16TAPA/DAM or C16TAPA/NIPAM complex salts (quenched charges). The formed phases were studied visually between crossed polarizers and by small angle X-ray scattering (SAXS). Both types of complex salts (annealed and quenched) formed hexagonal phases at high fractions of charged monomers and low water contents. Upon increasing the water content, a cubic phase of the Pm3n space group was found. Upon further addition of water, a miscibility gap with the cubic phase in equilibrium with pure water was found. Decreasing the fraction of charged monomers in the annealed complex salt resulted in an increase of the curvature of the surfactant aggregates. Only at very low (<0.05) fractions of charged monomers did the packing of the surfactant aggregates lose long-range order, and eventually, the miscibility gap disappeared. For the quenched complex salts, the changes upon decreasing the fraction of charged monomers in the polyion were similar, but the loss of long-range order occurred at much higher fractions of charged monomers. The average surfactant aggregation number in the surfactant aggregates, which was similar for the annealed and quenched systems, decreased when the fraction of charged monomers was decreased.  相似文献   

20.
With grand canonical simulations invoking a configurationally weighted scheme, we have calculated interactions between charged surfaces immersed in a polyelectrolyte solution. In contrast to previous simulations of such systems, we have imposed full equilibrium conditions (i.e., we have included diffusive equilibrium with a bulk solution). This has a profound impact on the resulting interactions: even at modest surface charge densities, oppositely charged chains will, at sufficiently large separations, adsorb strongly enough to overcompensate for the nominal surface charge. This phenomenon, known as charge inversion, generates a double-layer repulsion and a free-energy barrier. Simpler canonical approaches, where the chains are assumed to neutralize the surfaces perfectly, will not capture this stabilizing barrier. The barrier height increases with the length of the polyions. Interestingly enough, the separation at which the repulsion becomes attractive is independent of chain length. The short chains here are unable to reach across from one surface to the other. We therefore conclude that the transition to an attractive regime is not provided by the formation of such "intersurface" bridges. With long chains and at large separations, charge inversion displays decaying oscillatory behavior (i.e., the apparent surface charge switches sign once again). This is due to polyion packing effects. We have also investigated responses to salt addition and changes in polyelectrolyte concentration. Our results are in qualitative and semiquantitative agreement with experimental findings, although it should be noted that our chains are comparatively short, and the experimental surface charge density is poorly established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号