共查询到19条相似文献,搜索用时 78 毫秒
1.
粒子群优化算法及其在水库优化调度中的应用 总被引:2,自引:0,他引:2
提出了基于粒子群优化算法求解梯级单目标优化调度问题的一般算法结构,该算法通过计算时段库水位的变化范围,把梯级优化调度问题转化为无约束的优化问题处理,使得算法具有稳定、高效的收敛性能.通过对三峡梯级发电优化调度问题的计算,表明该算法是求解梯级优化调度问题的一种有效的手段. 相似文献
2.
为有效避免粒子群优化算法后期收敛速度慢的问题,提高寻优能力,设计了一种以自适应方式更新粒子飞行速度的弹性粒子群优化算法,建立了水电优化调度数学模型,提出了弹性粒子群优化算法解决水电优化调度问题的实现方法,包括粒子编码设计、适应度函数设计以及弹性修正值设计,并编制了基于Matlab语言的优化程序.实例仿真结果表明:弹性粒子群优化算法是有效的;相比基本粒子群优化算法和自适应粒子群优化算法,弹性粒子群优化算法求解水电优化调度问题具有更强的全局寻优能力和更快的收敛速度. 相似文献
3.
唐莉 《中国新技术新产品精选》2010,(20):1-1
粒子群算法适合求解连续变量优化问题,本文提出了粒子群算法的新离散化方法。常规粒子群算法在电力系统优化问题中取得了成功,但有“趋同性”。本文提出了改进多粒子群优化算法(IPPSO),IPPSO是两层结构:底层用多个粒子群相互独立地搜索解空间以扩大搜索范围;上层用1个粒子群追逐当前全局最优解以加快收敛。粒子群以及粒子状态更新策略不要求相同。 相似文献
4.
通过引入随机向量, 改进离散粒子群算法DPSO的更新方程, 提出一种离散的粒子群优化算法MDPSO, 并将其应用于调度问题的求解. 实验结果表明, 该算法优于传统的时序分解算法和遗传算法. 相似文献
5.
6.
免疫粒子群算法及其在水库优化调度中的应用 总被引:3,自引:0,他引:3
免疫粒子群优化算法(IA-PSO)是将免疫系统的免疫信息处理机制引入粒子群算法(PSO)中,利用其特有的浓度选择机制以及免疫接种功能的原理,改进粒子群优化算法的全局寻优能力,提高收敛速度.在分析水库优化调度的数学模型和IA-PSO算法特点的基础上,提出了基于IA-PSO算法的水库优化调度的方法,建立了数学模型,给出了具体求解步骤.经实例验证,IA-PSO得出的水库优化调度方案优于传统动态规划算法的计算结果,而且算法收敛速度快,为水库调度问题提供了一条新的有效求解途径. 相似文献
7.
针对协同粒子群优化算法存在的停滞现象,提出了一种改进的协同粒子群优化算法。采用优化法的子群协作方式,既保证了收敛速率,又可以防止陷入局部最优。同时引入综合学习策略,增加种群的多样性,防止种群出现停滞现象。在此基础上,又加入了扰动机制,进一步避免算法陷入局部最优。采用该算法对3个经典函数进行测试,并将其应用于Flow Shop调度问题,仿真实验结果表明:新算法有效克服了停滞现象,增强了全局搜索能力,比基本协同粒子群优化算法的优化性能更好。 相似文献
8.
无功优化是电力系统安全经济运行的核心问题之一,电力系统无功优化规划是一个较复杂、多目标、非线性的混合规划.它的目标是在满足约束条件的前提下,使系统的某个指标或多个指标达到最优.在分析配电网无功优化所面临困难的基础上提出了一种粒子群优化算法,并结合IEEE30节点试验系统利用粒子群算法以实现.计算结果表明,这种优化方法有利于提高配电网的无功优化水平. 相似文献
9.
粒子群优化(PSO)算法是一种新兴的基于群体智能的进化算法.介绍了PSO算法的基本原理及各种改进方法,总结了近年来PSO在电力系统中的应用研究成果,主要涉及负荷经济分配、机组组合问题、输电网规划、最优潮流计算、无功优化等领域,指出了PSO算法的广阔应用前景。 相似文献
10.
高春涛 《哈尔滨商业大学学报(自然科学版)》2010,26(4):442-445
粒子群算法是近几年来迅速发展起来的,得到广泛应用的一种新型模拟进化优化算法.研究表明该算法具有简单易于实现,可调参数少等优良性质.对粒子群算法理论及其进展情况做了阐述,介绍了该算法在理论和实际问题中的应用,并对其前景进行了展望. 相似文献
11.
为了在生产中快速有效且合理地安排生产流程,达到生产最优化,采用改进粒子群权值算法(DPSO)。研究了DPSO算法地参数设置问题,在传统PSO算法基础上加入具有动态自适应调整功能的权重因子,使算法更快地达到全局最优化,迭代次数也大大缩短,将DPSO算法用于流程工业的flow-shop调度中,大大提高了生产效率,仿真实验表明该算法具有良好的全局优化性能。该成果对生产调度具有一定的参考价值和指导意义。 相似文献
12.
为解决基于多核计算环境下的粒子群优化问题,提出一种面向多核计算的改进粒子群算法.通过引入多核设计模式和方法,分析传统粒子群算法中可以并行执行的部分,并根据已有的多核编程语言,在多核计算环境下,高效、并行地实现粒子群算法.通过实验验证了改进算法在多核计算环境下运行的有效性. 相似文献
13.
以带有约束条件的Petri网为动态车间调度问题建模,同时提出一种针对动态车间调度问题的编码粒子群算法,对调度序列进行优化.对算法进行了仿真研究,研究结果表明该算法是可行、有效的. 相似文献
14.
介绍了PSO算法,结合电力系统无功优化问题的实际情况,针对其存在的易陷入局部最优点的缺点,提出了改进的PSO算法。该算法改变了初始化方法和粒子更新方法,在算法后期引入变异因子,并将问题分解成子问题进行处理。在IEEE-14节点系统的仿真计算中,改进PSO算法与其他人工智能算法相比,在较短时间内取得了更好的优化效果。 相似文献
15.
基于遗传粒子群混合的可重入生产调度优化 总被引:1,自引:0,他引:1
可重入生产调度优化问题是个NP难问题,针对可重入生产调度的特点,对该优化问题进行数学规划建模,并通过一些定义将模型映射为有向图,以便于智能搜索算法的应用.结合粒子群算法收敛速度快与遗传算法全局搜索能力强的特点,进行优势互补,并优化设计相关参数,构造了一种混合算法.运用混合算法对供应链优化调度问题模型进行求解,与标准遗传算法、粒子群算法的求解结果进行比较,结果表明混合算法有着更好的优化性能. 相似文献
16.
一种改进PSO算法的电力系统无功优化方法 总被引:1,自引:0,他引:1
粒子群优化(PSO)算法是一种新兴的群体智能优化技术,其思想来源于人工生命和演化计算理论,PSO通过粒子追随自己找到的最优解和整个群的最优解来完成优化.该算法简单易实现,可调参数少,已得到广泛研究和应用.本文将粒子群优化算法应用到电力系统无功优化问题的研究中,给出了具体的实施流程.为提高PSO的搜索能力,对PSO进行了改进,在算法中加入了第3种极值指导粒子搜索方向.对IEEE-6节点系统的仿真计算结果表明了算法的有效性. 相似文献
17.
基本粒子群算法(PSO)存在早熟问题,且惯性权重对参数辨识结果的影响较大,为此提出将变权重PSO算法和全局最优位置变异PSO算法相结合的改进PSO算法,并将其应用于双馈感应发电机(DFIG)的参数辨识。分析了DFIG中各参数的可辨识性和辨识难易度,给出了基于改进PSO算法的参数辨识步骤。与采用基本PSO算法、变权重PSO算法和全局最优位置变异PSO算法的参数辨识结果相比较,该方法具有收敛速度快、辨识误差小的优点,即使在较大的搜索范围内仍具有较高的辨识精度。 相似文献
18.
基于粒子群算法的井眼轨迹优化研究 总被引:2,自引:0,他引:2
为了更优更快地对石油工程中的井眼轨迹进行优化,进行了基于改进粒子群优化(PSO)算法的井眼轨迹优化研究.通过对造斜率归一化,推导出目标函数表达式,将问题归结到对式中参数优化问题上来.引入PSO算法,在保持了PSO算法结构简单可行特点的同时,利用惩罚函数方法和叉乘控制项,对基本PSO算法易限入局部极小点周边区域的局限进行了改进.该井眼轨迹模型和相应算法提高了井眼轨迹优化速度.通过对钻井工程中轨迹参数的优化实践,验证了本算法优于基本的PSO算法,较好地实现了对井眼轨迹的优化. 相似文献