首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Evidence is presented for the gas phase generation of at least eight stable isomeric [C2H7O2]+ ions. These include energy-rich protonated peroxides (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_2 {\rm O}\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (e), \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm (H)OH} $\end{document} (f) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm O}\mathop {\rm O}\limits^{\rm + } {\rm (H)CH}_{\rm 3} {\rm (g)),} $\end{document} (g)), proton-bound dimers (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH = O} \cdot \cdot \cdot \mathop {\rm H}\limits^{\rm 3} \cdot \cdot \cdot {\rm OH}_{\rm 2} $\end{document} (h) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH2 = O} \cdot \cdot \cdot \mathop {\rm H}\limits^{\rm + } \cdot \cdot \cdot {\rm HOCH}_{\rm 3} $\end{document} (i)) and hydroxy-protonated species (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} {\rm (OH)CH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} (a), $\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH(OH)}\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (b) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm OCH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (c)). The important points of the present study are (i) that these ions are prevented by high barriers from facile interconversion and (ii) that both electron-impact- and proton-induced gas phase decompositions seem to proceed via multistep reactions, some of which eventually result in the formation of proton-bound dimers.  相似文献   

2.
From a combination of isotopic substitution, time-resolved measurements and sequential collision experiments, it was proposed that whereas ionized methyl acetate prior to fragmentation rearranges largely into \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 \mathop {\rm C}\limits^ + ({\rm OH}){\rm O}\mathop {\rm C}\limits^{\rm .} {\rm H}_2 $\end{document}, in contrast, methyl propanoate molecular ions isomerize into \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_2 {\rm CH}_2 \mathop {\rm C}\limits^ + ({\rm OH}){\rm OCH}_3 $\end{document}. Metastably fragmenting methyl acetate molecular ions are known predominantly to form H2?OH together with \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 - \mathop {\rm C}\limits^ + = {\rm O} $\end{document}, whereas ionized methyl propanoate largely yields H3CO˙ together with \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 {\rm CH}_2 - \mathop {\rm C}\limits^ + = {\rm O} $\end{document}. The observations were explained in terms of the participation of different distonic molecular ions. The enol form of ionized methyl acetate generates substantially more H3CO˙ in admixture with H2?OH than the keto tautomer. This is ascribed to the rearrangement of the enol ion to the keto form being partially rate determining, which results in a wider range of internal energies among metastably fragmenting enol ions. Extensive ab initio calculations at a high level of theory would be required to establish detailed reaction mechanisms.  相似文献   

3.
The charge stripping mass spectra of [C2H5O]+ ions permit the clear identification of four distinct species: \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} - {\rm O - }\mathop {\rm C}\limits^{\rm + } {\rm H}_{\rm 2}$\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} - \mathop {\rm C}\limits^{\rm + } {\rm H - OH}$\end{document}, and \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 2} = {\rm CH - }\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2}$\end{document}. The latter, the vinyloxonium ion, has not been identified before. It is generated from ionized n-butanol and 1,3-propanediol. Its heat of formation is estimated to be 623±12 kJ mol?1. The charge stripping method is more sensitive to these ion structures than conventional collisional activation, which focuses attention on singly charged fragment ions.  相似文献   

4.
Ion cyclotron resonance spectrometry and deuterium labeling have been used to determine that nondecomposing \documentclass{article}\pagestyle{empty}\begin{document}${\rm (CH}_{\rm 3} {\rm)}_{\rm 2} \mathop {\rm N}\limits^{\rm + } {\rm = CH}_{\rm 2}$\end{document} ions do not isomerize to \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} {\rm CH = }\mathop {\rm N}\limits^{\rm + } {\rm HCH}_{\rm 3}$\end{document}.  相似文献   

5.
The rate constants for the protonation of “free” (that is, solvated) superoxide ions by water and ethanol are equal to 0.5–3.5 ×10?3M?1·s?1 in DMF and AN at 20º. It has been found that the protonation rates for the ion pairs of \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document} with the Bu4N+ cation are much slower than those for “free” \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document}. It is suggested that the effects of aprotic solvents on the protonation rates of \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document} are mainly due to the fact that the proton donors form solvated complexes of different stability in these solvents.  相似文献   

6.
The formation of the styryl ion \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm PhCH = }\mathop {\rm C}\limits^{\rm + } {\rm H} $\end{document} in the mass spectra of some cinnamic compounds is shown to occur via the intermediate formation of the cinnamoyl ion \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm Ph} - {\rm CH} = {\rm CH} - {\rm C} \equiv \mathop {\rm O}\limits^{\rm + } $\end{document} rather than by direct cleavage of the bond α to the double bond.  相似文献   

7.
Characterization of [C4H5O]+ ions in the gas phase using their collisional activation spectra shows that the four C3H5\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O isomers CH2?C(CH3)\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O, CH2?CHCH2\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O, CH3CH?CH\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O and ?? \documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O are stable for ≥ 10?5 s. It is concluded further from the characteristic shapes for the unimolecular loss of CO from C3H5\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O ions generated from a series of precursor molecules that the CH2?CH(CH3)\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O- and CH2?CHCH2\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O-type ions dissociate over different potential surfaces to yield [allyl]+ and [2-propenyl]+ [C3H5]+ product ions respectively. Cyclopropyl carbonyl-type ions lose CO with a large kinetic energy release, which points to ring opening in the transition state, whereas this loss from CH3CH?CH\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O-type ions is proposed to occur via a rate determining 1,2-H shift to yield 2-propenyl cations.  相似文献   

8.
Methods are described for the unequivocal identification of the acetyl, [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document} ?O] (a), 1-hydroxyvinyl, [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] (b), and oxiranyl, (d), cations. They involve the careful examination of metastable peak intensities and shapes and collision induced processes at very low, high and intermediate collision gas pressures. It will be shown that each [C2H3O]+ ion produces a unique metastable peak for the fragmentation [C2H3O]+ → [CH3]++CO, each appropriately relating to different [C2H3O]+ structures. [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] ions do not interconvert with any of the other [C2H3O]+ ions prior to loss of CO, but deuterium and 13C labelling experiments established that [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] (b) rearranges via a 1,2-H shift into energy-rich leading to the loss of positional identity of the carbon atoms in ions (b). Fragmentation of b to [CH3]++CO has a high activation energy, c. 400 kJ mol?1. On the other hand, , generated at its threshold from a suitable precursor molecule, does not rearrange into [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH], but undergoes a slow isomerization into [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] via [CH2\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}HO]. Interpretation of results rests in part upon recent ab initio calculations. The methods described in this paper permit the identification of reactions that have hitherto lain unsuspected: for example, many of the ionized molecules of type CH3COR examined in this work produce [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] ions in addition to [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] showing that some enolization takes place prior to fragmentation. Furthermore, ionized ethanol generates a, b and d ions. We have also applied the methods for identification of daughter ions in systems of current interest. The loss of OH˙ from [CH3COOD] generates only [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OD]. Elimination of CH3˙ from the enol of acetone radical cation most probably generates only [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] ions, confirming the earlier proposal for non-ergodic behaviour of this system. We stress, however, that until all stable isomeric species (such as [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^{\rm + } $\end{document}?C:]) have been experimentally identified, the hypothesis of incompletely randomized energy should be used with reserve.  相似文献   

9.
Three [C3H3O]+ ion structures have been characterized. The most stable of these is \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} = {\rm CH} - \mathop {\rm C}\limits^ + = {\rm O} $\end{document} its heat of formation ΔHf was measured as 749±5 kJ mol?1. In the μs time frame this ion fragments exclusively by loss of CO, a process which also dominates its collisional activation mass spectrum. The other stable [C3H3O]+ structures, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}\equiv \mathop {\rm C}\limits^ + - {\rm CHOH} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} = {\rm C} = \mathop {\rm C}\limits^{\rm + } - {\rm OH}, $\end{document}, were generated from some acetylenic and allenic precursor ions; their heats of formation were estimated to be 830 and 880 kJ mol?1 respectively. The former ion was also produced by the gas phase protonation of propynal. These ions show loss of C2H2 and CO in both their metastable ion and collisional activation mass spectra. The broad Gaussian-type metastable peak for the loss of CO was shown to consist of two components corresponding to gragmentations having different activation energies.  相似文献   

10.
Isotope labelling experiments and also consecutive fragmentation investigations of metastable ions, a novel technique in mechanistic studies, have been carried out to elucidate structure and genesis of the m/z 45 ions from dimethyl oxalate as well as dimethyl carbonate. It is shown that the formation of the m/z 45 ions, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} \mathop {\rm{O}}\limits^{\rm{ + }} = {\rm{CH}}_{\rm{2}} $\end{document}, in the mass spectra of these compounds arises via single step processes. Mechanisms involving hydrogen transfer and subsequent formation of cyclic intermediates which then collapse to give \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} \mathop {\rm{O}}\limits^{\rm{ + }} = {\rm{CH}}_{\rm{2}} $\end{document} directly from molecular ions are suggested. No evidence was found for a two-step fragmentation route to m/z 45 from the molecular ions of either dimethyl oxalate or dimethyl carbonate.  相似文献   

11.
Conduction band electrons produced by band gap excitation of TiO2-particles reduce efficiently thiosulfate to sulfide and sulfite. \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm 2e}_{{\rm cb}}^ - ({\rm TiO}_{\rm 2}) + {\rm S}_{\rm 2} {\rm O}_3^{2 - } \longrightarrow {\rm S}^{2 - } + {\rm SO}_3^{2 - } $\end{document} This reaction is confirmed by electrochemical investigations with polycrystalline TiO2-electrodes. The valence band process in alkaline TiO2-dispersions involves oxidation of S2O to tetrathionate which quantitatively dismutates into sulfite and thiosulfate, the net reaction being: \documentclass{article}\pagestyle{empty}\begin{document}$ 2{\rm h}^{\rm + } ({\rm TiO}_{\rm 2}) + 0.5{\rm S}_{\rm 2} {\rm O}_{\rm 3}^{{\rm 2} - } + 1.5{\rm H}_{\rm 2} {\rm O} \longrightarrow {\rm SO}_3^{2 - } + 3{\rm H}^{\rm + } $\end{document} This photodriven disproportionation of thiosulfate into sulfide and sulfite: \documentclass{article}\pagestyle{empty}\begin{document}$ 1.5{\rm H}_{\rm 2} {\rm O } + 1.5{\rm S}_{\rm 2} {\rm O}_{\rm 3}^{{\rm 2} - } \mathop \to \limits^{h\nu} 2{\rm SO}_3^{2 - } + {\rm S}^{{\rm 2} - } + 3{\rm H}^{\rm + } $\end{document} should be of great interest for systems that photochemically split hydrogen sulfide into hydrogen and sulfur.  相似文献   

12.
Ab initio molecular orbital calculations with split-valence plus polarization basis sets and incorporating electron correlation and zero-point energy corrections have been used to examine possible equilibrium structures on the [C2H7N]+˙ surface. In addition to the radical cations of ethylamine and dimethylamine, three other isomers were found which have comparable energy, but which have no stable neutral counterparts. These are \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}and\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm }, $\end{document} with calculated energies relative to the ethylamine radical cation of ?33, ?28 and 4 kJ mol?1, respectively. Substantial barriers for rearrangement among the various isomers and significant binding energies with respect to possible fragmentation products are found. The predictions for \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^ + {\rm H}_{\rm 3} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3}$\end{document} are consistent with their recent observation in the gas phase. The remaining isomer, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm },$\end{document}is also predicted to be experimentally observable.  相似文献   

13.
Computations predict that H2O will shift rapidly between the carbons of \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm .} {\rm H}_2 {\rm CH}_2 \mathop {\rm O}\limits^ + {\rm H}_2 $\end{document} over most of the energy range between the threshold for formation of the ion and the onset of its decomposition. This prediction is important to understanding the relationships and contrasts between the chemistries of free radicals and carbonium ions. We present experimental evidence that the theoretical predictions are correct.  相似文献   

14.
The unimolecular decompositions of two isomers of [C3H8N]+, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} {\rm CH} = \mathop {\rm N}\limits^ + {\rm H}_2 $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^ + {\rm H = CH}_{\rm 2} $\end{document}, are discussed in terms of the potential energy profile over which reaction may be considered to occur. The energy needed to promote slow (metastable) dissociations of either ion is found to be less than that required to cause isomerization to the other structure. This finding is supported by the observation of different decomposition pathways, different metastable peak shapes for C2H4 loss, the results of 2H labelling studies, and energy measurements on the two ions. The corresponding potential energy profile for decomposition of the oxygen analogues, \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} {\rm CH}_{\rm 2} {\rm CH =\!= }\mathop {\rm O}\limits^ + {\rm H} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} \mathop {\rm O}\limits^ + {\rm = CH}_{\rm 2} $\end{document}, is compared and contrasted with that proposed for the [C3H8N]+ isomers. This analysis indicates that for the oxygen analogues, the energy needed to decompose either ion is very similar to that required to cause isomerization to the other structure. Consequently, dissociation of either ion is finely balanced with rearrangement to the other and similar reactions are observed. Detailed mechanisms are proposed for loss of H2O and C2H4 from each ion and it is shown that these mechanisms are consistent with 2H and 13C labelling studies, the kinetic energy release associated with each decomposition channel, the relative competition between H2O and C2H4 loss and energy measurements.  相似文献   

15.
A study of the fragmentation of the \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{\left({{\rm C}_{\rm 6} {\rm H}_{\rm 6} {\rm O}} \right){\rm Fe}} \right]_{}^{_.^ + } $\end{document} ion formed from two different precursors suggests that the ions adopt different structures over that part of the energy distribution giving rise to decomposition in the ion source.  相似文献   

16.
Linear polyacroleins prepared by anionic polymerization give the structural repeat units of the types \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--}[{\rm CH}\left( {{\rm CHO}} \right)\hbox{--} {\rm CH}_{\rm 2} {\rm \rlap{--} ], \rlap{--} [CH}_{\rm 2} \hbox{--} {\rm CH}\left( {{\rm CHO}} \right)\rlap{--} ], $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm CH}\left( {{\rm CH}\hbox {\rm CH}_2 } \right)\hbox{\rm O\rlap{--} ]} $\end{document} without any cyclization. Analysis of these polymers by several methods reveal the nature and amount of each structural species, and an estimation of their distribution along the polymeric chain.  相似文献   

17.
The photooxidation of acrylonitrile, methacylonitrile, and allylcyanide in the presence of NO was studied in parts per million concentration using the long-path Fourier transform IR spectroscopic method. The stoichiometry of the OH radical initiated oxidation of methacrylonitrile was established as \documentclass{article}\pagestyle{empty}\begin{document}$ \left( {{\rm OH}} \right) + {\rm CH}_{\rm 2} = {\rm C}\left( {{\rm CH}_{\rm 3} } \right){\rm CN + 2NO + 2O}_{\rm 2} \mathop {\hbox to 20pt{\rightarrowfill}}\limits^{1.0} {\rm HCHO + CH}_{\rm 3} {\rm COCN + 2NO}_{{\rm 2}} + \left( {{\rm OH}} \right) $\end{document}. The yield of HCHO for acrylonitrile and allylcyanide was found to be ca. 100 and 80%, and the stoichiometric reactions were assessed to proceed, \documentclass{article}\pagestyle{empty}\begin{document}$ \left( {{\rm OH}} \right) + {\rm CH}_{\rm 2} = {\rm CHCN + 2NO + 2O}_{\rm 2} \mathop {\hbox to 20pt{\rightarrowfill}}\limits^{1.0} {\rm HCHO + HCOCN + 2NO}_{\rm 2} + \left( {{\rm OH}} \right) $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \left( {{\rm OH}} \right) + {\rm CH}_{\rm 2} = {\rm CHCH}_{\rm 2} {\rm CN + 2NO + 2O}_{\rm 2} \mathop {\hbox to 20pt{\rightarrowfill}}\limits^{0.8} {\rm HCHO + HCOCH}{\rm 2} {\rm CN + 2NO}_{\rm 2} + \left( {{\rm OH}} \right) $\end{document}, respectively. These results revealed that the reaction mechanism for these unsaturated organic cyanides are analogous to that of olefins.  相似文献   

18.
Gaseous protonated aziridine ions are produced at the threshold from β-phenoxyethylamine molecular ions. The evidence for this is collisional activation spectra, using various precursors (including labelled analogues) under electron impact and field ionization conditions. Partial conversion to the acyclic \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH = }\mathop {\rm N}\limits^ + {\rm H}_{\rm 2} $\end{document} isomer occurs at higher electron energies and is rationalized by means of a potential energy surface constructed from energetic data.  相似文献   

19.
Bifunctional methoxonium ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm R} -\mathop {\rm C}\limits^ + ({\rm OCH}_3 ) - ({\rm CH}_2 )_{\rm n} - {\rm OH}({\rm b}) $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm R} - \mathop {\rm C}\limits^ + ({\rm OCH}_3 ) - ({\rm CH}_2 )_{\rm n} - {\rm OCH}_3 ({\rm c}) $\end{document} (c) show as the main reactions those caused by functional group interaction, as has already been found for the analogous hydroxonium ions (g). Although there are similarities in the fragmentation behaviour of the isomeric ions b and g, their fragmentation pathways are different, proving b and g as distinct species. The dominant primary fragmentation for b and c is loss of CH3OH. The hydrogen migrations prior to this reaction have been established by deuterium labelling. The findings on the fragmentation behaviour of the bifunctional methoxonium ions have been extended to the general behaviour of hydroxy and alkoxy substituted alkoxonium ions.  相似文献   

20.
By using isobutane (t-BuH) as a radical trapit has been possible to study the initial step in the decomposition of dimethyl peroxide (DMP) over the temperature range of 110–140°C in a static system. For low concentrations of DMP (2.5 × 10?5?10?4M) and high pressures of t?BuH (~0.9 atm) the first-order homogeneous rate of formation of methanol (MeOH) is a direct measure of reaction (1): \documentclass{article}\pagestyle{empty}\begin{document}${\rm DMP}\mathop \to \limits^1 2{\rm Me}\mathop {\rm O}\limits^{\rm .},{\rm Me}\mathop {\rm O}\limits^{\rm .} + t{\rm - BuH}\mathop \to \limits^4 {\rm MeOH} + t{\rm -}\mathop {\rm B}\limits^{\rm .} {\rm u}$\end{document}. For complete decomposition of DMP in t-BuH, virtually all of the DMP is converted to MeOH. Thus DMP is a clean thermal source of Me\documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document}. In the decomposition of pure DMP complications arise due to the H-abstraction reactions of Me\documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document} from DMP and the product CH2O. The rate constant for reaction (1) is given by k1 = 1015.5?37.0/θ sec?1, very similar to other dialkyl peroxides. The thermochemistry leads to the result D(MeO? OMe) = 37.6 ± 0.2 kcal/mole and /H(Me\documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document}) = 3.8 ± 0.2 kcal/mole. It is concluded that D(RO? OR) and D(RO? H) are unaffected by the nature of R. From ΔS and A1, k2 is calculated to be 1010.3±0.5 M?1· sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$2{\rm Me}\mathop {\rm O}\limits^{\rm .} \mathop \to \limits^2 {\rm DMP}$\end{document}. For complete reaction, trace amounts of t-BuOMe lead to the result k2 ~ 109 M?1 ·sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$2t{\rm - Bu}\mathop \to \limits^5$\end{document} products. From the relationship k6 = 2(k2k5a)1/2 and with k5a = 108.4 M?1 · sec?1, we arrive at the result k6 = 109.7 M?1 · sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$2t{\rm - u}\mathop {\rm B}\limits^{\rm .} \to (t{\rm - Bu)}_{\rm 2}{\rm,}t{\rm -}\mathop {\rm B}\limits^{\rm .} {\rm u} + {\rm Me}\mathop {\rm O}\limits^{\rm .} \mathop \to \limits^6 t{\rm - BuOMe}$\end{document}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号