首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to clarify the correlation between polymerization and monomer isomerization in the monomer-isomerization polymerization of β-olefins, the effects of some transition metal compounds which have been known to catalyze olefin isomerizations on the polymerizations of butene-2 and pentene-2 with Al(C2H5)3–TiCl3 or Al(C2H5)3–VCl3 catalyst have been investigated. It was found that some transition metal compounds such as acetylacetonates of Fe(III), Co(II), and Cr(III) or nickel dimethylglyoxime remarkably accelerate these polymerizations with Al(C2H5)3–TiCl3 catalyst at 80°C. All the polymers from butene-2 were high molecular weight polybutene-1. With Al(C2H5)3–VCl3 catalyst, which polymerizes α-olefins but does not catalyze polymerization of β-olefins, no monomer-isomerization polymerizations of butene-2 and pentene-2 were observed. When Fe(III) acetylacetonate was added to this catalyst system, however, polymerization occurred. These results strongly indicate that two independent active centers for the olefin isomerization and the polymerizations of α-olefins were necessary for the monomer-isomerization polymerizations of β-olefins.  相似文献   

2.
A study of the isomerization of butene-2 with TiCl3 or Al(C2H5)3–TiCl3 catalyst in n-heptane has been investigated at 60–80°C to elucidate further the mechanism of monomer-isomerization polymerization. It was found that positional and geometrical isomerizations in the presence of these catalysts occurred concurrently with activation energies of 14–16 kcal/mole. The presence of Al(C2H5)3 with TiCl3 catalyst could accelerate the initial rates of these isomerizations and initiate the monomer-isomerization polymerization of butene-2. From the results obtained, it was concluded that the isomerization of butene-2 proceeds via an intermediate σ-complex between the transition metal hydride and butene isomers.  相似文献   

3.
Monomer-isomerization polymerization of cis-2-butene (c2B) with Ziegler–Natta catalysts was studied to find a highly active catalyst. Among the transition metals [TiCl3, TiCl4, VCl3, VOCl3, and V (acac)3] and alkylauminums used, TiCl3? R3Al (R = C2H5 and i-C4H9) was found to show a high-activity for monomer-isomerization polymerization of c2B. The polymer yield was low with TiCl4? (C2H5)3Al catalyst. However, when NiCl2 was added to this catalyst, the polymer yield increased. With TiCl3? (C2H5)3Al catalyst, the effect of the Al/Ti molar ratio was observed and a maximum for the polymer yields was obtained at molar ratios of 2.0–3.0, but the isomerization increased as a function of Al/Ti molar ratio. The valence state of titanium on active sites for isomerization and polymerization is discussed.  相似文献   

4.
5-Phenyl-2-pentene (5Ph2P) was found to undergo monomer-isomerization polymerization with TiCl3–R3Al (R = C2H5 or i-C4H9, Al/Ti > 2) catalysts to give a polymer consisting of exclusively 5-phenyl-1-pentene (5Ph1P) unit. The geometric and positional isomerizations of 5Ph2P to its terminal and other internal isomers were observed to occur during polymerization. The catalyst activity of alkylaluminum examined to TiCl3 was in the following order: (C2H5)3Al > (i-C4H9)3Al > (C2H5)2AlCl. The rate of monomer-isomerization polymerization of 5Ph2P with TiCl3–(C2H5)3Al catalyst was influenced by both the Al/Ti molar ratio and the addition of nickel acetylacetonate [Ni(acac)2], and the maximum rate was observed at Al/Ti = 2.0 and Ni/Ti = 0.4 in molar ratios.  相似文献   

5.
In order to elucidate the structure of the Ziegler-Natta polymerization center, we have carried out some kinetic studies on the polymerization of propylene with active TiCl3—Zn(C2H5)2 in the temperature range of 25–56°C. and the Zn(C2H5)2 concentration range of 4 × 10?3–8 × 10?2 mole/1., and compared the results with those obtained with active TiCl3—Al(C2H5)3. The following differences were found: (1) the activation energy of the stationary rate of polymerization is 6.5 kcal/mole with Zn(C2H5)2 and 13.8 kcal./mole with Al(C2H5)3; (2) the growth rate of the polymer chains with Zn(C2H5)2 is about times slower at 43.5°C.; and (3) the polymerization centers formed with Zn(C2H5)2 are more unstable. It can be concluded that the structure of the polymerization center with Zn(C2H5)2 is different from that with Al(C2H5)3.  相似文献   

6.
An attempt has been made to prepare a high molecular weight isotactic polybutene-1 from cis- or trans-butene-2. Polymerization of butene-2 did not occur due to the steric effect of the substituents. In the presence of TiCl3–Al(C2H5)3 catalyst, however, both butene-2 monomers were found to polymerize at a slower rate than butene-1 and to give polymers consisting of the repeating unit of butene-1. From the gas chromatographic determination of the isomer distribution of the butenes recovered after the polymerization, it was found that the butenes isomerized, in the presence of the catalyst system containing TiCl3, to approach the thermodynamic equilibrium mixture of butene-1, cis-butene-2, and trans-butene-2. It was also found that the rates of polymerization of butene-2 for the catalyst systems used were proportional to the isomerization rates. These results show that butene-2 isomerizes first to butene-1 which has less steric hindrance and then polymerizes as butene-1, through ordinary vinyl polymerization by a coordinated anionic mechanism. This type of polymerization was observed in some other linear β-olefins such as n-pentene-2 and n-hexene-2.  相似文献   

7.
Monomer-isomerization polymerization of cis-2-butene with four types of TiCl3 in combination with alkylaluminum compounds was investigated. The catalytic activities for monomer-isomerization polymerization were found to be influenced by the type of TiCl3 employed: systems containing hydrogen-activated-TiCl3 and Solvay-TiCl3 in combination with R3Al (R = C2H5 and i-C4H9) showed high catalytic activity for both isomerization and polymerization, whereas (C2H5)2AlCl in combination with any type of TiCl3 did not induce the monomer-isomerization polymerization. The addition effect of NiCl2 to the TiCl3? (C2H5)3Al catalyst was examined. Catalytic activities for both polymerization and isomerization reactions were found to depend on the amount of NiCl2 added.  相似文献   

8.
Monomer-isomerization polymerization of propenycyclohexane (PCH) with TiCl3 and R3-xAICIx (R = C2H5 or i-C4H9, x = 1–3) catalysts was studied. It was found that PCH underwent monomer-isomerization polymerization to give a high molecular weight polymer consisting of an allylcyclohexane (ACH) repeat unit. Among the alkyaluminum cocatalysts examined, (C2H5)3Al was the most effective cocatalyst for the monomer-isomerization polymerization of PCH, and a maximum for the polymerization was observed at a molar ratio of Al/Ti of about 2.0. The addition of isomerization catalysts such as nickel acetylacetonate [Ni(acac)2] to the TiCl3–(C2H5)3Al catalyst accelerated the monomer-isomerization polymerization of PCH and gave a maximum for the polymerization at a Ni/Ti molar ratio of 0.5. PCH also undergoes monomer-isomerization copolymerization with 2-butene (2B).  相似文献   

9.
The influence of SeOCl2 on the polymerization of propylene by TiCl3–Al(C2H5)3, and the temperature dependence of the stereospecificity of the catalyst, TiCl3–Al(C2H5)3, have been investigated. SeOCl2 decreases the rate of polymerization and increase the stereospecificity of the catalyst, which could be explained on the basis of a decrease of the concentration of Al(C2H5)3 accompanied by a reaction between Al(C2H5)3 and SeOCl2. On the other hand, the stereospecificity of the catalyst, TiCl3–Al(C2H5)3, increases gradually with a decrease in polymerization temperature from 40 to 0°C. From these results, we conclude that SeOCl2 exerts no essential influence on the polymerization of propylene by TiCl3–Al(C2H5)3, and that the stereospecificity of the catalyst is attributed mainly to the reducing ability of the organometallic compound.  相似文献   

10.
The polymerizations of 4-methyl-1-pentene(4M1P), 4-methyl-2-pentene (4M2P), 2-methyl-2-pentene (2M2P), and 2-methyl-1-pentene (2M1P) with Ziegler-Natta catalyst have been investigated. Both 4M1P and 4M2P were found to polymerize with TiCl3–(C2H5)Al catalyst to give high molecular weight poly(4M1P), while 2M2P and 2M1P did not give polymers with 4M1P units. However, when the polymerizations of 2M1P and 2M2P were carried out with ternary catalyst systems, TiCl3–(C2H5)AlCl–(PPh3)2PdCl2 and TiCl3–(C2H5)AlCl–Ni(SCN)2 polymers with 4M1P units were obtained in low yield. It was concluded that these four methylpentenes could polymerize with the monomer-isomerization polymerization mechanism to poly(4M1P). The results of the observed isomer distribution of methylpentenes recovered, and the rate of polymerization of four methylpentenes suggest that the isomerization from 2M1P to 4M1P with the above ternary catalyst systems might proceed via a direct one-step isomerization mechanism.  相似文献   

11.
The isomerization and polymerization of propenylbenzene (PB) with various Ziegler–Natta catalyst systems have been investigated. With the TiCl3–(C2H5)3Al (Al/Ti > 2.0) catalyst at 80°C, PB polymerized to give a polymer exclusively consisting of allylbenzene (AB) unit. During the polymerization, AB, which polymerized readily with the catalyst, was produced through isomerization of PB, indicating that PB underwent monomer-isomerization polymerization. PB also polymerized with isomerization to AB in the presence of TiCl3?(C2H5)2AlCl?NiCl2 catalyst system, and a copolymer with PB and AB units was obtained. With TiCl3?C2H5AlCl2 catalyst, poly(PB) was formed via ordinary vinylene polymerization without isomerization. From these facts, it was concluded that the structure of the polymers produced from PB widely changed, depending on the catalyst systems used, which determine the rate of isomerization to AB and the polymerization reactivity of the PB and AB isomers formed.  相似文献   

12.
The mechanism of formation and stereoregularity of poly(cyanoethyl)oxymethylene have been studied. The polymerization was carried out at ?78°C with use of aluminum compounds [Al(C2H5)3, Al(C2H5)2Cl, Al(C2H5)Cl2, and AlCl3] and complex catalysts [Al(C2H5)3–TiCl4, Al(C2H5)3–TiCl3, and Al(C2H5)2Cl–TiCl3] as initiators. The stereoregularity of poly(cyanoethyl)oxymethylene was estimated from the optical density ratio, D1258/D1270, in the infrared absorption spectrum. Polymer yields were observed to depend upon the aluminum compound used as initiators, while the stereoregularity of the polymer was nearly independent of the particular aluminum compound used. As the catalyst ratio of titanium chloride to aluminum compound increased, the polymer yield was found to increase to a maximum and then to decrease with further increase of the ratio. It is supposed that titanium chlorides themselves increase the acid strength of aluminum compounds through chlorination, resulting in the change of the polymer yield. The highest stereoregularity of poly(cyanoethyl)oxymethylene was attained by increasing the molar ratio of titanium trichloride to aluminum and by treating β-cyanopropionaldehyde (CPA) with titanium trichloride prior to the polymerization. Complex formation of the nitrile group of CPA with titanium is considered responsible for the increase in stereoregularity. A propagation mechanism is also proposed.  相似文献   

13.
1,4-Cyclohexadiene underwent monomer-isomerization polymerization to yield poly(1,3-cyclohexadiene) with a Ziegler-Natta catalyst comprising TiCl4–Al(C2H5)3 catalyst with Al/Ti molar ratios of 0.5–3.0 at 60°C for 96 hr. Good yields of polymer were obtained (49.5% yield at Al/Ti = 3.0; [η] = 0.04 dl/g). The infrared and NMR spectra of the polymer were identical to those of poly-(1,3-cyclohexadiene), confirming that 1,4-cyclohexadiene first isomerizes to 1,3-cyclohexadiene and then homopolymerizes to give poly-1,3-cyclohexadiene. 1,3-Cyclohexadiene polymerized without isomerization easily in the presence of TiCl3–Al(C2H5)3 catalyst at Al/Ti molar ratios of 0.5–3.0 at 60°C for 3 hr (76.3% yield at Al/Ti = 3.0; [η] = 0.06 dl/g).  相似文献   

14.
DFT (density-functional theory) calculations were performed to investigate the thermodynamics of formation of Olefin Separated Ion Pairs (OSIP) Cp2MtCH3+/C2H4/Cl2Al[O(AlMe3)AlHMe] (Cp = η5-C5H5, Mt = Ti, Zr, Me = CH3) from ethylene and Cp2MtMe · Cl2Al[O(AlMe3)AlHMe]2, a model of adduct produced by metallocence/methylaluminoxane (MAO) systems for olefin polymerization. The results account for the high cocatalytic activity of MAO and show that titanium complexes are potentially more active than zirconium homologues, as confirmed by low temperature polymerization tests.  相似文献   

15.
Polymerization of vinylcyclohexane (VCHA) with TiCl3–aluminum alkyl catalysts was investigated. The polymerization rate of VCHA was low due to the branch at the position adjacent to the reacting double bond. The effects of aluminum alkyl on the polymerization and monomer-isomerization were observed; the polymer yield decreased in the following order: (CH3)3Al > (i–C4H9)3Al > (C2H5)3Al. Isomerization of VCHA was observed with the TiCl3–(i–C4H9)3Al and the TiCl3–(C2H5)3Al catalysts during the polymerization, while with the TiCl3–(CH3)3Al catalyst such isomerization was not observed. Monomer-isomerization copolymerization of VCHA and trans-2-butene took place to give copolymers consisting of VCHA and 1-butene units.  相似文献   

16.
A modified-polypropene-supported Ziegler catalyst was prepared using polypropene containing a small amount of poly(7-methyl-1,6-octadiene) as a starting polymer for bromination, lithiation, and reaction with TiCl4. The polymerization of ethene was carried out using the catalyst with Al(C2H5)3 in toluene at 60°C up to 100 h. The polymer yield increased linearly with polymerization time, which indicates that the active sites of the modified-polypropene-supported Ziegler catalyst are practically stable without deactivation even for 100 h and are able to propagate further polymerization of ethene.  相似文献   

17.
18.
The electrical conductivity of several trialkylaluminum and alkyl-aluminum halides was investigated in dry benzene at 25°C. within the concentration range of 10?1–10?3M. The equivalent conductance of the trialkylaluminum systems decreased in the following order: Al(n-C6H13)3 > Al(n-C10H19)3 > Al(n-C4H9)3 > Al(i-C4H9)3 > Al(n-C3H7)3 > Al(C2H5)3. The conductance (1/R) of a given series was also examined and found to decrease as each alkyl group was successively replaced by a chlorine atom, thus: Al(C2H5)3 > Al(C2H5)2Cl > Al(C2H5)1.5Cl1.5 > Al(C2H5)Cl2 and Al(i-C4H9)3 > Al(i-C4H9)2Cl > Al(i-C4H9)Cl2. The ion pair dissociation constants K were calculated and show in a qualitative manner the difference between various organoaluminum systems. The relative rate of olefin polymerization was related to the conductivity of various organoaluminum–transition metal catalyst systems used. The effect of Lewis bases such as monoglyme, diglyme, triglyme, and tetraglyme on triethylaluminum indicated that the first-mentioned base forms a 1:1 type of complex as ordinary ethers do, whereas the remaining three bases utilize only two of their available oxygen atoms to coordinate with triethylaluminum. The effect of TiCl3 (in the presence of an ether) on the conductance was also determined.  相似文献   

19.
Supports were obtained by the interaction of C4H9MgCl with the reaction mixture of AlCl3 and CH3Si(OC2H5)3 or Si(OC2H5)4 (Mg/Al/Si = 2/1/1). With the combination of Al(C2H5)3 and methyl-p-toluate, immobilized titanium catalysts prepared by the treatment of the supports with TiCl4 and ethylbenzoate showed extraordinary high activity and stereoregularity in the polymerization of propylene.1 By the study of the reaction of AlCl3 with CH3Si(OC2H5)3, the elemental analysis and powder x-ray diffractometric measurements of the supports, it was found that the supports comprised of Cl, Mg, Al, and Si atoms, OC2H5 groups, C4H9 groups, and ethers, and that they were amorphous solids to the extent that the x-ray diffraction peak assigned to the 003 plane in MgCl2 crystals completely disappeared.  相似文献   

20.
A series of novel titanium(IV) complexes bearing tetradentate [ONNO] salan type ligands: [Ti{2,2′‐(OC6H3‐5‐t‐Bu)2‐NHRNH}Cl2] (Lig1TiCl2: R = C2H4; Lig2TiCl2: R = C4H8; Lig3TiCl2: R = C6H12) and [Ti{2,2′‐(OC6H2‐3,5‐di‐t‐Bu)2‐NHC6H12NH}Cl2] (Lig4TiCl2) were synthesized and used in the (co)polymerization of olefins. Vanadium and zirconium complexes: [ M{2,2′‐(OC6H3‐3,5‐di‐t‐Bu)2‐NHC6H12NH}Cl2] (Lig4VCl2: M = V; Lig4ZrCl2: M = Zr) were also synthesized for comparative investigations. All the complexes turned out active in 1‐octene polymerization after activation by MAO and/or Al(i‐Bu)3/[Ph3C][B(C6F5)4]. The catalytic performance of titanium complexes was strictly dependent on their structures and it improves for the increasing length of the aliphatic linkage between nitrogen atoms (Lig1TiCl2 << Lig2TiCl2 < Lig3TiCl2) and declines after adding additional tert‐Bu group on the aromatic rings (Lig3TiCl2 < Lig4TiCl2). The activity of all titanium complexes in ethylene polymerization was moderate and the properties of polyethylene was dependent on the ligand structure, cocatalyst type, and reaction conditions. The Et2AlCl‐activated complexes gave polymers with lover molecular weights and bimodal distribution, whereas ultra‐high molecular weight PE (up to 3588 kg mol?1) and narrow MWD was formed for MAO as a cocatalyst. Vanadium complex yielded PE with the highest productivity (1925.3 kg molv?1), with high molecular weight (1986 kg mol?1) and with very narrow molecular weight distribution (1.5). Copolymerization tests showed that titanium complexes yielded ethylene/1‐octene copolymers, whereas vanadium catalysts produced product mixtures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2111–2123  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号