首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stresses and strains in a diamond anvil cell device were investigated using a finite-element code NIKE2D for the case of an ultra-hard composite gasket material. The pressure distribution in a diamond-coated rhenium gasket was measured by the energy dispersive diffraction technique to 213 GPa and compared with the finite-element modeling results. We examine various models for the mechanical properties of diamond-coated rhenium gasket as well as for diamond failure for shear stresses exceeding 100 GPa. The elastic and plastic properties of gasket were varied such that a good agreement between the experimentally measured pressure distribution and the computational pressure profiles were obtained. As a result, we obtained the effective Young’s modulus, Poisson’s ratio, yield stress for indented gasket, linear hardening modulus, and hardening parameter value for this layered ultra-hard composite gasket material. Future diamond design strategies for attainment of extreme high pressures using ultra-hard gasket materials are also discussed.  相似文献   

2.
运用接触力学和圆环压溃强度理论对由V型槽固定的光子晶体光纤进行了受力分析。分别考虑了两种极限情况,以推导光纤中的应力分布。第一种情况假设光纤是完全由纯石英材料制成的内部均匀的实芯圆柱体;第二种情况是把光纤假设成一个空芯圆柱体。根据这两种极限情况推导出了光子晶体光纤受力后光纤内部的最大应力点位于平行于接触面的外层空气孔的附近。采用有限元方法验证了此结论,计算出了光子晶体光纤可能承受的最大压力,并给出了光子晶体光纤在V型槽中的应力分布和变形情况。  相似文献   

3.
Three novel experimental techniques were employed in this work in order to investigate the influence of the interphase region in polymer–glass composites on the bulk material properties: (i) the microdroplet test is a single fibre test designed to characterize the fibre–matrix bond (interface region) and to determine the interfacial shear stress in composite material; (ii) the nano-indentation test, a novel nano-hardness technique with ability to produce an indent as low as a few nanometres was employed in order to measure nano-hardness of the fibre–matrix interphase region; and (iii) the nano-scratch test, used in conjunction with the nano-indentation test for measurement of the interphase region width. The microdroplet test (MDT) has been used to characterize the interfacial bond in fibrous composite materials. The specimen consists of a fibre with a drop of cured resin pulled while the drop is being supported by a platinum disc with a hole. A properly tested specimen fails at the droplet’s tip–fibre interface, revealing the ultimate interfacial shear strength. In this study, finite element analysis (FEA) of the MDT has been focused toward simulation of the fibre–matrix interphase region. The influence of several functional variations of the material properties across the interphase layer on the stress distribution at the droplet’s tip was analysed. The results showed that the variation of the interphase properties significantly affects the stress distribution at the fibre–droplet interface, and, therefore, the stress redistribution to composite material. These results led to further experimental investigation of the interphase region, in order to obtain the material properties essential for the interfacial stress analysis. The interphase region in dry and water aged polymer–glass composite materials was investigated by means of the nano-indentation and the nano-scratch techniques. The nano-indentation test involved indentation as small as 30 nm in depth, produced along a 14 μm path between the fibre and the matrix. The distinct properties of the interphase region were revealed by 2–3 indents in dry materials and up to 15 indents in water aged, degraded materials. These results indicated interdiffusion in water aged interphase regions. The nano-scratch test involves moving a sample while being in contact with a diamond tip. The nano-scratch test, used in conjunction with the nano-indentation test, accurately measured the width of the interphase region. The results showed that the harder interphase region dissolved into the softer interphase region (both regions being harder/stronger than the matrix) expanding its width after aging in water.  相似文献   

4.
Anhu Li  Zhu Luan  Liren Liu 《Optik》2011,122(17):1584-1587
In order to solve the nonlinear contact problem with the friction action in the mirror assembly, the modeling analysis is carried out by the MPC method of shell-to-solid coupling. Considering the friction factor existing in the contact region, the deformation and stress of the strap obviously changes from fixed region, transition region to contact region, which further produces a serious edge effect around the mirror and leads to the uneven stress distribution. The results show the maximal deformation of the assembly is 9.98 μm and the maximal stress is 10.5 MPa, which has much tolerance to the precision requirement of structure and the admissible stress of material; the influence of heat effect on the surface deformations of mirror is proved to be far greater than that of only gravity load. The advantages of the contact model built by the MPC method are more close to the actual working conditions and more accurate analysis results can be obtained.  相似文献   

5.
6.
A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem(e.g., resistant coating and thermal barrier coatings) subjected to complicated load conditions.To decrease the calculation scale and calculation errors, the local Lagrange multipliers are solved only on a pair of contact nodes using the Jacobi iteration method, and the constraint modification of the tangential multipliers are required. After the calculation of the present node-pairs Lagrange multiplier, it is turned to next contact node-pairs until all node-pairs have finished. Compared with an ordinary contact algorithm, the new local node-pairs contact algorithm is allowed a more precise element on the contact face without the stiffness matrix singularity. The stress intensity factors(SIFs) and the contact region of an infinite plate central crack are calculated and show good agreement with those in the literature. The contact zone near the crack tip as well as its influence on singularity of stress fields are studied. Furthermore, the frictional contacts are also considered and found to have a significant influence on the SIFs. The normalized mode-II stress intensity factors K?IIfor the friction coefficient decrease by 16% when f changes from 1 to 0.  相似文献   

7.
In the present study contact between elastic–ideally plastic dissimilar spheres are investigated in detail. The investigation is based on numerical methods and in particular the finite element method. The numerical results presented are discussed with respect to correlation of global contact properties as well as the behavior of local field variables such as contact pressure distribution and the evolution of the effective plastic strain. Large deformation effects are accounted for and discussed in detail. The constitutive behavior is described by classical Mises plasticity. It is shown that correlation of the dissimilar contact problem can be accurately achieved based on the Johnson contact parameter with the representative stress chosen as the yield stress of the softer material.  相似文献   

8.
Ultrasonically assisted turning of modern aviation materials is conducted with ultrasonic vibration (frequency f approximately 20 kHz, amplitude a approximately 15 microm) superimposed on the cutting tool movement. An autoresonant control system is used to maintain the stable nonlinear resonant mode of vibration throughout the cutting process. Experimental comparison of roughness and roundness for workpieces machined conventionally and with the superimposed ultrasonic vibration, results of high-speed filming of the turning process and nanoindentation analyses of the microstructure of the machined material are presented. The suggested finite-element model provides numerical comparison between conventional and ultrasonic turning of Inconel 718 in terms of stress/strain state, cutting forces and contact conditions at the workpiece/tool interface.  相似文献   

9.
Abstract

Measurements are made of the stress developed in near-spherical elastic inclusions in an elastic plastic matrix under both tension and compression loading. Two experimental conditions are reported. The first case is where no thermal mismatch exists between the inclusions and the matrix, so that the stress in the inclusion is purely a result of the misfit in the elastic moduli and of the distortion of the plastic slip-line field around the inclusion. The observations are believed to be the first such and are in qualitative agreement with finite-element modelling for idealised inclusion distributions. The second case is the more usual one where a thermal misfit stress exists and observations are reported of the stress relief effects caused by the interaction of the plasticity-induced stress with the thermal and elastic misfit stresses.  相似文献   

10.
采用有限元分析软件ANSYS模拟了面对等离子体钨材料在聚变瞬态高热流加载和卸载过程中的温度和应力分布以及演化过程,并结合材料力学性能对热冲击开裂行为进行了分析和讨论.结果表明,在瞬态热流下,钨的单次热冲击开裂阈值约200MW·m–2(~5ms)、460MW·m–2(~1ms)和660MW·m–2(~0.5ms),其临界热流因子(14.14~14.75MW·m–2·s1/2)也基本一致.  相似文献   

11.
采用有限元分析软件ANSYS模拟了面对等离子体钨材料在聚变瞬态高热流加载和卸载过程中的温度和应力分布以及演化过程,并结合材料力学性能对热冲击开裂行为进行了分析和讨论。结果表明,在瞬态热流下,钨的单次热冲击开裂阈值约200MW•m–2 (~5ms)、460MW•m–2 (~1ms)和660MW•m–2(~0.5ms),其临界热流因子(14.14~14.75MW•m–2•s1/2)也基本一致。  相似文献   

12.
The reflection of ultrasound from partially contacting rough surfaces   总被引:1,自引:0,他引:1  
Ultrasound is commonly used to detect and size cracks in a range of engineering components. Modeling techniques are well established for smooth and open cracks. However, real cracks are often rough (relative to the ultrasonic wavelength) and closed due to compressive stress. This paper describes an investigation into the combined effects of crack face roughness and closure on ultrasonic detectability. A contact model has been used to estimate the size and shape of scatterers (voids) at the interface of these rough surfaces when loaded. The response of such interfaces to excitation with a longitudinal ultrasonic pulse over a wide range of frequencies has been investigated. The interaction of ultrasound with this scattering interface is predicted using a finite-element model and good agreement with experiments on rough surfaces is shown. Results are shown for arrays of equi-sized scatterers and a distribution of scatterer sizes. It is shown that the response at high frequencies is dependent on the size, shape, and distribution of the scatterers. It is also shown that the finite-element results depart from the mass-spring model predictions when the product of wave number and scatterer half-width is greater than 0.4.  相似文献   

13.
The three-dimensional dynamic traction vector of a vibrating structure is obtained with the aid of the so-called hybrid strain analysis. Hybrid strain analysis is a method where vibration response measured at a limited number of points and numerically approximated continuous Hilbert space basis functions combined with spatial differentiation yields the frequency-dependent strain tensor field in a vibrating structure.Here, an extension and special application of hybrid strain analysis is proposed. In a special case with a built-up structure with unknown dynamic properties in the interfaces between the parts, the frequency- and spatial-dependent stress tensors, and thus also the traction vector, are obtained for the structural parts using the proposed technique.The method is validated using numerical simulation of measured vibration responses, with very good agreement between the calculated and the true traction vector. The calculated traction vector is shown to converge towards the true traction vector in an arbitrary small area on the boundary of the structure.The method is demonstrated for isotropic elastic material properties. This is, however, no limitation for the method; it can be also applied to a structure with anelastic material properties.  相似文献   

14.
Carefully designed indentation creep experiments and detailed finite-element computations were carried out in order to establish a robust and systematic method to extract creep properties accurately during indentation creep tests. Samples made from an Al–5.3?mol%?Mg solid-solution alloy were tested at temperatures ranging from 573 to 773?K. Finite-element simulations confirmed that, for a power-law creep material, the indentation creep strain field is indeed self-similar in a constant-load indentation creep test, except during short transient periods at the initial loading stage and when there is a deformation mechanism change. Self-similar indentation creep leads to a constitutive equation from which the power-law creep exponent n, the activation energy Q c for creep, the back or internal stress and so on can be evaluated robustly. The creep stress exponent n was found to change distinctively from 4.8 to 3.2 below a critical stress level, while this critical stress decreases rapidly with increasing temperature. The activation energy for creep in the stress range of n = 3.2 was evaluated to be 123?kJ?mol?1, close to the activation energy for mutual diffusion of this alloy, 130?kJ?mol?1. Experimental results suggest that, within the n = 3.2 regime, the creep is rate controlled by viscous glide of dislocations which drag solute atmosphere and the back or internal stress is proportional to the average applied stress. These results are in good agreement with those obtained from conventional uniaxial creep tests in the dislocation creep regime. It is thus confirmed that indentation creep tests of Al–5.3?mol%?Mg solid-solution alloy at temperatures ranging from 573 to 773?K can be effectively used to extract material parameters equivalent to those obtained from conventional uniaxial creep tests in the dislocation creep regime.  相似文献   

15.
A finite-element analysis is used to explore the impact of elastic material properties, boundary conditions, and geometry, including coiling, on the spatial characteristics of the compliance of the unloaded basilar membrane (BM). It is assumed that the arcuate zone is isotropic and the pectinate zone orthotropic, and that the radial component of the effective Young's modulus in the pectinate zone decreases exponentially with distance from base to apex. The results concur with tonotopic characteristics of compliance and neural data. Moreover, whereas the maximum compliance in a radial profile is located close to the boundary between the two zones in the basal region, it shifts to the midpoint of the pectinate zone for the apical BM; the width of the profile also expands. This shift begins near the 1 kHz characteristic place for guinea pig and the 2.4 kHz place for gerbil. Shift and expansion are not observed for linear rather than exponential decrease of the radial component of Young's modulus. This spatial change of the compliance profile leads to the prediction that mechanical excitation in the apical region of the organ of Corti is different to that in the basal region.  相似文献   

16.
The strain field in the channel of a p-type metal-oxide-semiconductor field effect transistor fabricated by integrating Ge pre-amorphization implantation for source/drain regions is evaluated using a finite-element method combining with large angle convergent-beam electron diffraction (LACBED). The finite-element calculation shows that there is a very large compressive strain in the top layer of the channel region caused by a low dose of Ge ion implantation in the source and drain extension regions. Moreover, a transition region is formed in the bottom of the channel region and the top of the Si substrate. These calculation results are in good agreement with the LACBED experiments.  相似文献   

17.
Thermal effects due to high ultrasound absorption in bone pose an ongoing safety issue. Of considerable concern is the heating of the soft tissue adjacent to the bone surface. Mathematical models can be useful in predicting the transient temperature near the interface during insonation. This paper develops a model that provides the temperature field in terms of simple expressions that convey the functional dependence of the material properties, and are easily incorporated into standards and ultrasound machine software, yet are able to incorporate the material properties of both bone and soft tissue. The model contains an asymptotic theory based upon a "high-attenuation" assumption: the distance diffused by heat over the time of interest is large compared to the ultrasound attenuation length. Model predictions of temperature rise and location of maximum temperature were in close agreement with finite-element calculations, using parameters appropriate for radiation-force imaging and focused-ultrasound surgery.  相似文献   

18.
In this paper, the static analysis of functionally graded (FG) circular plates resting on linear elastic foundation with various edge conditions is carried out by using a semi-analytical approach. The governing differential equations are derived based on the three dimensional theory of elasticity and assuming that the mechanical properties of the material vary exponentially along the thickness direction and Poisson's ratio remains constant. The solution is obtained by employing the state space method (SSM) to express exactly the plate behavior along the graded direction and the one dimensional differential quadrature method (DQM) to approximate the radial variations of the parameters. The effects of different parameters (e.g., material property gradient index, elastic foundation coefficients, the surfaces conditions (hard or soft surface of the plate on foundation), plate geometric parameters and edges condition) on the deformation and stress distributions of the FG circular plates are investigated.  相似文献   

19.
Dynamic response analysis is presented for a Reissner–Mindlin plate with four free edges resting on a tensionless elastic foundation of the Winkler-type and Pasternak-type. The mechanical loads consist of transverse partially distributed impulsive loads and in-plane static edge loads while the temperature field is assumed to exhibit a linear variation through the thickness of the plate. The material properties are assumed to be independent of temperature. The two cases of initially compressed plates and of initially heated plates are considered. The formulations are based on Reissner–Mindlin first-order shear deformation plate theory and include the plate–foundation interaction and thermal effects. A set of admissible functions is developed for the dynamic response analysis of moderately thick plates with four free edges. The Galerkin method, the Gauss–Legendre quadrature procedure and the Runge–Kutta technique are employed in conjunction with this set of admissible functions to determine the deflection-time and bending moment–time curves, as well as shape mode curves. An iterative scheme is developed to obtain numerical results without using any assumption on the shape of the contact region. The numerical illustrations concern moderately thick plates with four free edges resting on tensionless elastic foundations of the Winkler-type and Pasternak-type, from which results for conventional elastic foundations are obtained as comparators. The results confirm that the plate will have stronger dynamic behavior than its counterpart when it is supported by a tensionless elastic foundation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号