首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of solid poly(ethylene oxide)-based polymer electrolytes (PE) for lithium batteries, paved the way to the development of solid-state batteries based on PEs. Yet, low cationic mobility–low Li+ transference number in polymer materials coupled with sufficiently high room-temperature conductivity remains inaccessible. The current strategies employed for the production of single-ion polymer conductors include designing new lithium salts, bonding of anions with the main polyether chain or incorporating them into the side chains of comb-branched polymers, plasticizing, adding inorganic fillers and anion receptors. Glass and crystalline superionic solids are classical single-ion-conducting electrolytes. However, because of grain boundaries and poor electrode/electrolyte interfacial contacts, achieving electrochemical performance in solid-state batteries comprising polycrystalline inorganic electrolytes, comparable to the existing batteries with liquid electrolytes, is particularly challenging. Quasi-elastic polymer-in-ceramic electrolytes provide good alternatives to the traditional lithium-ion-battery electrolytes and are believed to be the subject of extensive current research. This review provides an account of the advances over the past decade in the development of single-ion-conducting electrolytes and offers some directions and references that may be useful for further investigations.  相似文献   

2.
Polymer electrolytes – solid polymeric membranes with dissolved salts – are being intensively studied for use in all-solid-state lithium-metal-polymer (LMP) batteries to power consumer electronic devices. The low ionic conductivity at room temperature of existing polymer electrolytes, however, has seriously hindered the development of such batteries for many applications. The incorporation of salts molten at room temperature (room temperature ionic liquids or RTILs) into polymer electrolytes may be the necessary solution to overcoming the inherent ionic conductivity limitations of ‘dry’ polymer electrolytes.  相似文献   

3.
未来可穿戴电子器件和系统需要柔性电池提供致密、 安全且可靠的电能源保障. 发展兼具可拉伸性和高离子电导率的固体电解质技术是实现全固态锂电池柔性化, 进而满足上述要求的关键之一. 本文综合评述了提升聚合物基复合固体电解质离子传导性能的主要机制和研究进展, 分析了在不同尺度下解耦离子传导和力学承载功能, 进而在弯折、 拉伸等形变工况下维持离子传导性能稳定的策略, 介绍了有助于推动可拉伸聚合物基复合固体电解质研究的几类先进表征技术, 并展望了未来研究工作的重点方向.  相似文献   

4.
以共聚型氯醇橡胶(ECO)为基体, 通过在基体中溶解不同浓度的LiCF3SO3制备了一系列聚合物电解质. 利用差示扫描量热技术(DSC)研究了该体系锂盐浓度对聚合物电解质玻璃化转变温度的影响, 用傅里叶变换红外光谱(FTIR)研究了体系内锂盐与聚合物基体的相互作用. 结果表明, 在相同锂盐浓度下, ECO基聚合物电解质的室温离子电导率比传统的聚环氧乙烷(PEO)基聚合物电解质提高了2个数量级, 并且体系电导率在升降温循环测试中没有弛豫现象产生. 这是由于ECO基体的非结晶性所致.  相似文献   

5.
高分子固体电解质设计的新概念   总被引:10,自引:0,他引:10  
高分子固体电解质是开发零释放能源--高性能电池的关键材料。本文详细介绍了20世纪90年代以来高分子固体电解质结构设计的新概念,包括高分子凝胶电解质,两相高分子电解质,盐掺聚合物(Polymer-in-salt),有机/无机纳米复合型电解质,悬挂柔性短聚醚侧链的网格聚合物电解质。  相似文献   

6.
The theory of the diffuse layer for asymmetric electrolytes is reconsidered with emphasis on the effects of ion size on the diffuse layer potential drop and differential capacity. For asymmetric 2:1 and 1:2 electrolytes, this potential drop is expressed in terms of a polynomial with a linear, quadratic, and cubic term in the corresponding estimate in the Gouy-Chapman theory. Optimal polynomial coefficients and model validation for 2:1 electrolytes are provided by least-squares regression of Monte Carlo data obtained for a restricted electrolyte in a primitive solvent. These coefficients are then expressed as simple functions of the parameters commonly associated with the mean spherical approximation. The series approach accurately describes potential drops and differential capacities of the diffuse layer for 2:1 and 1:2 electrolytes for the chosen assumptions.  相似文献   

7.
Polymer electrolytes, salts dissolved in solid polymers, hold the key to realizing all solid-state devices such as rechargeable lithium batteries, electrochromic displays, or SMART windows. For 25 years conductivity was believed to be confined to amorphous polymer electrolytes, all crystalline polymer electrolytes were thought to be insulators. However, recent results have demonstrated conductivity in crystalline polymer electrolytes, although the levels at room temperature are too low for application. Here we show, for the first time, that it is possible to raise significantly the level of ionic conductivity by aliovalent doping. The conductivity may be raised by 1.5 orders of magnitude if the SbF6- ion in the crystalline conductor poly(ethylene oxide)6:LiSbF6 is replaced by less than 5 mol % SiF6(2-), thus introducing additional, mobile, Li+ ions into the structure to maintain electroneutrality.  相似文献   

8.
Dye-sensitized solar cells(DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time stability is still to be acquired. In recent years research on solid and quasi-solid state electrolytes is extensively increased. Various quasi-solid electrolytes, including composites polymer electrolytes, ionic liquid electrolytes,thermoplastic polymer electrolytes and thermosetting polymer electrolytes have been used. Performance and stability of a quasi-solid state electrolyte are between liquid and solid electrolytes. High photovoltaic performances of QS-DSSCs along better long-term stability can be obtained by designing and optimizing quasi-solid electrolytes. It is a prospective candidate for highly efficient and stable DSSCs.  相似文献   

9.
Two different electrolyte salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and a room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI), were incorporated into network polymers to obtain ion-conductive polymer electrolytes. Network polymers of poly(ethylene oxide-co-propylene oxide) (P(EO/PO)) and poly(methyl methacrylate) (PMMA) were chosen as matrixes for LiTFSI and EMITFSI, respectively. Both of the polymer electrolytes were single-phase materials and were completely amorphous. Ionic conductivity of the polymer electrolytes was measured over a wide temperature range, with the lowest temperatures close to or below the glass transition temperatures (Tg). The Arrhenius plots of the conductivity for both of the systems exhibited positively curved profiles and could be well fit to the Vogel-Tamman-Fulcher (VTF) equation. The conductivity of the PMMA/EMITFSI electrolytes was higher at most by 3 orders of magnitude than that of the LiTFSI/P(EO/ PO) electrolytes at ambient temperature. When the ideal glass transition temperature, T0 (one of the VTF fitting parameters), was compared with the Tg, a difference in the ionic conduction was apparent in these systems. In the P(EO/PO)/LiTFSI electrolytes, the T0 and Tg increased in parallel with salt concentration and the T0 was lower than the Tg by ca. 50 degrees C. On the contrary, the difference between the T0 and the Tg increased with increasing content of PMMA in the PMMA/EMITFSI electrolytes, with the observed difference in the concentration range studied reaching up to ca. 100 degrees C. The conductivity at the Tg, sigma(Tg), for the LiTFSI/P(EO/PO) electrolytes was on the order of 10(-14-)10(-13) S cm(-1) and increased with increasing salt concentration, whereas that for the PMMA/EMITFSI polymer electrolytes reached 10(-7) S cm(-1) when the concentration of PMMA was high. The ion transport mechanism was discussed in terms of the concepts of coupling/decoupling and strong/fragile for the two different polymer electrolytes.  相似文献   

10.
The Ebeling-Falkenhagen diffusion equations are applied to calculate the Onsager transport coefficients as well as the electrical conductances, transference numbers, and mutual diffusion coefficients for isothermal binary electrolytes. For this purpose the hierarchy of diffusion equations is closed on the level of the binary distribution functions by the superposition approximation. The resulting system of common differential equations is solved by numerical methods. Hydrodynamic interactions are taken into account up to first order. Some results are given for symmetrically charged binary electrolytes with hard-core ions (restricted primitive interaction model). The model parameters (Bjerrum parameter and Debye screening length) are chosen to represent strong electrolytes up to the molar region.  相似文献   

11.
Yoshimura Y  Suzuki N 《Talanta》1978,25(8):489-491
The solubilities of benzoyltrifluoroacetone in water and in aqueous solutions of eight electrolytes at 25 degrees were determined. The salting coefficients of benzoyltrifluoroacetone for these electrolytes were obtained from these data, and were found to accord with McDevit-Long theory. Comparison of the salting coefficients for benzoyltrifluoroacetone with those for benzoylacetone suggested that the former has a less polar structure than the latter in their aqueous solutions.  相似文献   

12.
李丹丹  纪翔宇  陈明  杨燕茹  王晓东  冯光 《电化学》2022,28(11):2219002
近年来,随着单阳离子液体的发展,新型低聚物离子液体被合成并应用。这类离子液体可看作是由几个重复的单阳离子组合而成,可以通过改变阳离子带电基团、间隔连接的长度或种类、末端链的长度以及阴离子种类来获得更多不同的结构。因此,低聚离子液体有更复杂的微观结构和内部相互作用,决定了其多特征的物化性质和电化学特性,有望满足更多对溶剂性能有特定要求的应用。例如,与单阳离子液体相比,低聚离子液体具有更大的可调节性、更宽的液态温度范围、更高的热稳定性等优点,使其在电化学储能设备中得到越来越多的应用,如用作超级电容器和锂离子电池的电解液。在本综述中,我们系统地总结并详细解释了低聚离子液体的性质和结构(包括单个离子的结构和本体液内部的纳米组织)之间的关联,主要是双阳离子液体和三阳离子液体;概括了低聚离子液体作为超级电容器和锂离子电池的电解液的相关研究,重点阐述了由低聚离子液体和不同类型电极组成的双电层的结构和性能,以及与相应单阳离子液体电解液的比较结果;提供了降低低聚离子液体粘度和加速离子扩散的优化措施,提出了低聚离子液体电解液未来可能面临的主要问题和发展前景。  相似文献   

13.
Ionic liquids(ILs) have appeared as the most promising electrolytes for lithium-ion batteries, owing to their unique high ionic conductivity, chemical stability and thermal stability properties. Poly(ionic liquid)s(PILs) with both IL-like characteristic and polymer structure are emerging as an alternative of traditional electrolyte. In this review, recent progresses on the applications of IL/PIL-based semi-solid state electrolytes, including gel electrolytes, ionic plastic crystal electrolytes, hybrid electrolytes and single-ion conducting electrolytes for lithium-ion batteries are discussed.  相似文献   

14.
Aluminum-air batteries (AABs) are regarded as attractive candidates for usage as an electric vehicle power source due to their high theoretical energy density (8100 Wh kg−1), which is considerably higher than that of lithium-ion batteries. However, AABs have several issues with commercial applications. In this review, we outline the difficulties and most recent developments in AABs technology, including electrolytes and aluminum anodes, as well as their mechanistic understanding. First, the impact of the Al anode and alloying on battery performance is discussed. Then we focus on the impact of electrolytes on battery performances. The possibility of enhancing electrochemical performances by adding inhibitors to electrolytes is also investigated. Additionally, the use of aqueous and non-aqueous electrolytes in AABs is also discussed. Finally, the challenges and potential future research areas for the advancement of AABs are suggested.  相似文献   

15.
Effects of various additives, including electrolytes, alcohols and organic acids, polymers, and ionic and nonionic surfactants, on the cloud point of dodecyl polyoxyethylene (5) polyoxypropylene (4) ether nonionic surfactant aqueous solutions are investigated. The salting-out electrolytes decrease the cloud point while salting-in electrolytes increase it. Most alcohols and organic acids can lower the cloud point except for methanol and ethanol. The polymers form complexes with the surfactant and decrease the cloud point. The added surfactants can be inserted into the micelles of the nonionic surfactant and form mixed micelles, thus raising the cloud point.  相似文献   

16.
Liquid electrolytes with high ionic conductivity, high transference number for the target ions, and excellent electrochemical, chemical, and thermal stability are essential for electrochemical energy storage devices. Water-in-salt (WIS) electrolytes, in which the salt–water ratio is larger than one, are gaining intensive attention in the electrochemical community. Here, we review the recent work on WIS electrolytes and the closely related water-in-ionic liquid electrolytes. We highlight the fact that many properties of these electrolytes, in bulk and at electrolyte–electrode interfaces, are underpinned by the physics and chemistry of the interfaces formed between water and ions (or aggregated water/ion clusters). Manipulating these interfaces by tailoring the selection of ions and water–ion ratio opens up new dimensions in the optimization of liquid electrolytes but also poses new challenges. We conclude the review by highlighting several directions for research on WIS electrolytes, in particular, the study of WIS electrolyte–electrode interfaces using surface force measurements.  相似文献   

17.
Ionic conductivities of the polymer electrolytes prepared from the ionomer (poly(methyl methacrylate-co-alkali metal methacrylate)), lithium perchlorate, and ethylene carbonate as a plasticizer, were studied as a function of the ion content and the alkali-metal cation of the ionomer. It was possible to obtain tough films with room-temperature ionic conductivities of ∼ 10-3 S/cm. The maximum ion conductivities of the polymer electrolytes were obtained at the ion content of 5 mol % for both Li and Na ionomer. The effects of the ion content of the ionomer on the ionic conductivities of the polymer electrolytes were mainly interpreted in terms of the characteristics of the ion aggregate formed in the polymer electrolytes. The thermal dependence of the ionic conductivity was shown to be a non-VTF pattern in some of the polymer electrolytes investigated, which is expected to be due to the presence of the ion aggregate. © John Wiley & Sons, Inc.  相似文献   

18.
综述了本研究小组近年来用于染料敏化太阳电池中聚合物电解质的研究概况.设计合成了几类性能优良的聚合物电解质,较好地改进了液体电解质染料敏化太阳电池(DSSC)的使用稳定性,研究结果具有实际应用的价值,并提出了此领域研究今后的发展方向.  相似文献   

19.
The dependency of EOF on the H+-concentration and the related so called pH* value of methanolic electrolytes has been examined with poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA) and uncoated capillaries. These results were compared with the pH dependency of EOF of these capillaries using aqueous buffers. In uncoated capillaries the dependency of EOF on the pH(*)-value is very similar for aqueous and methanolic electrolytes. The EOF increases with increasing H+-concentration and pH-hysteresis is observed. In PVA coated capillaries the EOF is strongly reduced over wide pH* or pH ranges for both methanolic electrolytes and aqueous buffers. The EOF in PEG coated capillaries is surprisingly directed to the anode with methanolic electrolytes whereas a reduced cathodic EOF is observed in aqueous electrolytes. The anodic EOF of PEG-coated capillaries in methanolic electrolytes is independent of the pH*-value. The usefulness of PEG- and PVA-coated capillaries for adjusting the EOF in non-aqueous electrolytes for the analysis of isomeric organic acids was demonstrated.  相似文献   

20.
Polymer electrolytes have attracted great interest for next-generation lithium-based batteries on account of safety and high energy density. In this review, we assess recent progress on the design of poly(ethylene oxide)(PEO)-based solid polymer electrolytes in high voltage lithium batteries and identify possible side reactions between PEO-based electrolytes and existing cathodes. We provide an overview of the ways to enhance high voltage resistance of PEO-based electrolytes. Those include components blend, molecular design and interface modification. With these efforts, we want to present new insights into rational design of PEO-based electrolytes to develop solid-state lithium batteries for advanced performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号