首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study mechanisms involved in liposome–cell interaction, this work attempted to assess the influence of vesicle composition on the delivery of liposomal content to Hela cells. In particular, to evaluate pH-sensitive properties and cell interaction of the prepared liposomes, the lipid formulations contained cholesterol (Chol) and they were varied by using phosphatidylcholines with different purity degree: soy lecithin (SL; 80% phosphatidylcholine), a commercial mixture of soy phosphatidylcholine (P90; 90% phosphatidylcholine) or dipalmitoylphosphatidylcholine (DPPC; 99% of purity). A second series of liposomes also contained stearylamine (SA). Dehydration-rehydration vesicles (DRV) were prepared and then sonicated to decrease vesicle size. Vesicle–cell interactions and liposomal uptake were examined by fluorescence microscopy using carboxyfluorescein (CF) and phosphatidylethanolamine-dioleoyl-sulforhodamine B (Rho-PE) as fluorescent markers. Fluorescence dequenching assay was used to study the influence of pH on CF release from the liposomal formulations. Liposome adhesion on the cell surface and internalization were strongly dependent on vesicle bilayer composition. SA vesicles were not endocytosed. DPPC/Chol liposomes were endocytosed but did not release their fluorescent content into the cytosol. SL/Chol and P90/Chol formulations displayed a diffuse cytoplasmic fluorescence of liposomal marker.  相似文献   

2.
We demonstrate that it is possible to form non-phospholipid fluid bilayers in aqueous milieu with a mixture of palmitic acid (PA),cholesterol (Chol),and cholesterol sulfate (Schol) in a molar proportion of 30/28/42.These self-assemblies are shown to be bilayers in the liquid ordered phase.They are stable between pH 5 and 9.Over this pH range,the protonation/deprotonation of PA carboxylic group is observed but this change does not appear to alter the stability of these bilayers,a behavior contrasting with that observed for binary mixtures of PA/Chol,and PA/Schol.The multilamellar dispersions formed spontaneously from the PA/Chol/Schol mixture could be successfully extruded to form Large Unilamellar Vesicles (LUVs).These LUVs show interesting permeability properties,linked with their high sterol content.These non-phospholipid liposomes can sustain a pH gradient (pH internal 8/pH external 6) 100 times longer than LUVs made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol,with a molar ratio of 60/40.Moreover,the non-phospholipid LUVs are shown to protect ascorbic acid from an oxidizing environment (1 mM iron(III)).Once entrapped in liposomes,ascorbic acid displays a degradation rate similar to that obtained in the absence of iron(III).These results show the possibility to form novel nanocontainers from a mixture of a monoalkylated amphiphile and sterols,with a good pH stability and showing interesting permeability properties.  相似文献   

3.
In photodynamic therapy, one of the problems limiting the use of many photosensitizers (PS) is the difficulty in preparing pharmaceutical formulations that enable their parenteral administration. Due to their low water solubility, the hydrophobic PS cannot be simply injected intravenously. Different strategies, including polymer-PS conjugation or encapsulation of the drug in colloidal carriers such as oil-dispersions, liposomes and polymeric particles, have been investigated. Although these colloidal carriers tend to accumulate selectively in tumour tissues, they are rapidly taken up by the mononuclear phagocytic system. In order to reduce this undesirable uptake by phagocytic cells, long-circulating carriers that consist of surface modified carriers have been developed. Moreover, considerable effort has been directed towards using other types of carriers to improve tumour targeting and to minimize the side effects. One of the approaches is to entrap PS into the lipophilic core of low-density lipoproteins (LDL) without altering their biological properties. The LDL receptor pathway is an important factor in the selective accumulation of PS in tumour tissue owing to the increased number of LDL receptors on the proliferating cell surface. Specific targeting can also be achieved by binding of monoclonal antibodies or specific tumour-seeking molecules to PS or by the coating of PS loaded carriers.  相似文献   

4.
5.
We measured the electrophoretic mobilities of HL-60RG cells and their apoptotic cells triggered by Actinomycin D as a function of the ionic strength of the suspending medium at pH 7.4. Both types of cells showed negative mobilities. The apoptotic HL-60RG cells exhibited larger mobility values in magnitude than intact HL-60RG cells in the whole range of the electrolyte concentration measured. The obtained data were analyzed via a mobility expression for soft particles, that is, colloidal particles with ionpenetrable surface layers. The observed mobility difference between the intact and apoptotic HL-60RG cells was found to be due mainly to the difference in friction exerted by the cell surface layers on the liquid flow around the cells between these two types of cells rather than the difference in charge density in their surface layers. A possible explanation for this mobility change by apoptosis is given.  相似文献   

6.
7.
The uptake of Cu2+ was investigated using various types of liposomes composed of phosphatidylcholine (PC), cholesterol (Chol) and dicethylphosphate (DCP). DCP played a role as a ligand for Cu2+. Multilamellar vesicles (MLVs) were more effective for the uptake of Cu2+ compared to unilamellar vesicles prepared by the extrusion technique. The uptake efficiency of MLVs for Cu2+ was dependent on the molar ratio of DCP in MLVs. The uptake percent of Cu2+ was 92% using MLVs having a PC:DCP:Chol molar ratio of 4:3:3; 95% of the total vesicle Cu2+ was bound to DCP of the outer membrane surface of the MLVs, and the remaining 5% of the total Cu2+ was distributed into the interior side of the MLVs. MLVs having a PC:DCP:Chol molar ratio of 4:3:3 were also effective as separation media for Mn2+, Co2+, Ni2+ and Zn2+. The uptake efficiency of the MLVs for the transition-metal ions increased in the order Co2+ < Zn2+ < Ni2+ < Mn2+ < Cu2+.  相似文献   

8.
sPS/PA6/蒙脱土纳米复合材料的制备与性能   总被引:4,自引:3,他引:4  
讨论了间规聚苯乙烯 (sPS) 尼龙 6(PA6) 磺化间规聚苯乙烯 (SsPS H) 蒙脱土纳米复合材料的制备技术和新材料的结构与性能特征 .蒙脱土经层间改性处理后 (MTN) ,可分别将SsPS H和aPS(无规聚苯乙烯 )插入其纳米层间 ,制备出插层型纳米复合物MTN SsPS和MTN aPS .在sPS/PA6/SsPS H三组分共混体系中加入MTN SsPS或MTN aPS ,进行四组分熔融共混即可制备出sPS/PA6/SsPS H/蒙脱土纳米复合材料 .TEM测定证实了蒙脱土在基体中的层厚分布约为 5 0nm .此外 ,采用DSC、DMA、XRD及力学性能测试仪等现代分析方法对sPS/PA6/SsPS H/蒙脱土纳米复合材料的结构与性能进行了详细研究 .研究结果表明这种纳米复合材料具有优良的综合性能  相似文献   

9.
The in vitro stability, under freeze–thawing procedures, and in vivo degradation, in rat spleen, of two types of polymerized liposomes were examined: 1,2‐bis‐[2E, ­4E) ‐ octadecadienoyl] ‐ sn ‐ glycero ‐ 3 ‐ phosphocholine (DODPC) and 1‐acyl‐2‐[(2E, 4E)‐octadecadienoyl]‐sn‐glycero‐3‐phosphocholine (AODPC) were used as polymerizable phospholipids. The lipid composition of the liposomes was prepared as DODPC/Chol/SA (Chol = cholesterol, SA = stearicacid), AODPC/Chol/SA (7/7/2 by molar ratio), AODPC/DPPC/Chol/SA (3.5/3.5/7/2 by molar ratio). The liposomes were extruded through a 0.2 µm polycarbonate‐ filter to obtain the approximate particle size of 0.2 µm, and then irradiated with γ‐rays. Hemoglobin‐encapsulated liposomes were also prepared in the same manner with concentrated hemoglobin (Hb) solution. The DODPC/Chol/SA liposome exhibited no trace of particle size change nor Hb leakage. Although not as excellent as the former, the AODPC‐base liposome showed slightly diameter change (below 7.5%) with a substantial abatement of Hb leakage (<3.5%). Transmission electron microscopy observation of spleens also revealed more efficient degradability with AODPC/DPPC/Chol/SA liposome than with DODPC/Chol/SA liposome. Hb‐encapsulated AODPC/DPPC/Chol/SA liposome, after five freeze–thawing cycles, attained an Hb leakage below 3.5% with a particle size change of 0.7–7.5%, and reduced the spleen retention compared with the DODPC‐base liposome. These results suggest that AODPC/DPPC/Chol/SA liposome can be used as a long‐term preservable blood substitute. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, usefulness of the Langmuir monolayer study is demonstrated for predictions of the stability of liposomes composed of dipalmitoyl phosphatidylcholine (DPPC) and cholesterol (Chol). Thermodynamic analysis of the surface pressure (π)-area (A) isotherms of the DPPC/Chol systems was performed, which allowed for concluding on miscibility of the components, their molecular packing, and the interactions between molecules. It was found that the most stable system, in which the strongest interactions between molecules occured, was DPPC/Chol at x(Chol)=0.25. The stability of liposomes of the same composition as that in the Langmuir monolayers was analyzed by determining the size distribution of vesicles and the polydispersity as a function of time. The changes of these parameters confirmed that the system of the greatest stability is that with low Chol content.  相似文献   

11.
The stability of zwitterionic phosphatidylcholine vesicles in the presence of 20 mol% phosphatidyl serine (PS), phosphatidic acid (PA), phosphatidyl inositol (PI), and diacylphosphatidyl glycerol (PG) phospholipid vesicles, and cholesterol or calcium chloride was investigated by asymmetrical flow field-flow fractionation (AsFlFFF). Large unilamellar vesicles (LUV, diameter 100 nm) prepared by extrusion at 25 °C were used. Phospholipid vesicles (liposomes) were stored at +4 and −18 °C over an extended period of time. Extruded egg yolk phosphatidylcholine (EPC) particle diameters at peak maximum and mean measured by AsFlFFF were 101 ± 3 nm and 122 ± 5 nm, respectively. No significant change in diameter was observed after storage at +4 °C for about 5 months. When the storage period was extended to about 8 months (250 days) larger destabilized aggregates were formed (172 and 215 nm at peak maximum and mean diameters, respectively). When EPC was stored at −18 °C, large particles with diameters of 700–800 nm were formed as a result of dehydration, aggregation, and fusion processes. In the presence of calcium chloride, EPC alone did not form large aggregates. Addition of 20 mol% of negatively charged phospholipids (PS, PA, PI, or PG) to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) vesicles increased the electrostatic interactions between calcium ion and the vesicles and large aggregates were formed. In the presence of cholesterol, large aggregates of about 250–350 nm appeared during storage at +4 and −18 °C for more than 1 day.

The effect of liposome storage temperature on phospholipid coatings applied in capillary electrophoresis (CE) was studied by measuring the electroosmotic flow (EOF). EPC coatings with and without cholesterol, PS, or calcium chloride, prepared from liposomes stored at +25, +4, and −18 °C, were studied at 25 °C. The performances of the coatings were further evaluated with three uncharged compounds. Only minor differences were observed between the same phospholipid coatings, showing that phospholipid coatings in CE are relatively insensitive to storage at +25, +4 °C or −18 °C.  相似文献   


12.
The uptake of nanoparticles by cells of the mononuclear phagocytic system limits its use as colloidal drug carriers, reducing the blood circulation time and the ability to reach biological targets. In this work, the interaction between dextrin nanoparticles – recently developed in our laboratory – and murine bone marrow-derived macrophages was evaluated. Cytotoxicity and nitric oxide production were studied, using the MTT assay and the Griess method, respectively. FITC labelled nanoparticles were used to assess the phagocytic uptake and blood clearance after intravenous injection. The phagocytic uptake was analysed in vitro by confocal laser scanning microscopy and fluorescence activated cell sorting. The results show that the nanoparticles are not cytotoxic and do not stimulate the production of nitric oxide by macrophages, in the range of concentrations studied. Nanoparticles are phagocytosed by macrophages and are detected inside the cells, concentrated in cellular organelles. The blood clearance study showed that the blood removal of the nanoparticles occurs with a more pronounced rate in the first 3 h after intravenous administration, with about 30% of the material remaining in systemic circulation at this stage. Given the fairly high blood circulation time and biocompatibility, the dextrin nanoparticles are promising carriers for biomedical applications. Both applications targeting phagocytic, antigen-presenting cells (for vaccination purposes) and different tissues (as drug carriers) may be envisaged, by modulation of the surface properties.  相似文献   

13.
Amphiphiles which carry many pendent galactose residues as side chains were prepared by telomerization of 2-methacryloyloxyethyl β-D-galactopyranoside (MEGal) or 3-(2-methacryloyl aminoethylthio)propylD-galactopyranoside (MEPGal, α:β = 3.9:1) using a lipophilic radical initiator. The galactose-carrying amphiphiles (DP (degree of polymerization) = 15) incorporated in liposomes were recognized by a lectin fromRicinus communis(RCA120), which was proven by the increase in turbidity of the liposome suspension after mixing with the lectin. The recognition was largely affected by the distance between the galactose residues and the polymer main chain, and the surface density of the amphiphile in the liposomes. The liposomes containing these galactolipids were not taken up by mouse peritoneal macrophages, probably due to a steric hindrance of polymer main chains from the uptake of D-galactose receptors on the macrophages.  相似文献   

14.
The bifunctional comonomer 4‐(3‐butenyl) styrene was used to synthesize crosslinked polystyrene microspheres (c‐PS) with pendant butenyl groups on their surface via suspension copolymerization. Polyethylene chains were grafted onto the surface of c‐PS microspheres (PS‐g‐PE) via ethylene copolymerizing with the pendant butenyl group on the surface of the c‐PS microspheres under the catalysis of metallocene catalyst. The composition and morphology of the PS‐g‐PE microspheres were characterized by means of Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, X‐ray photoelectron spectroscopy, and field‐emission scanning electron microscopy. It is possible to control the content of PE grafted onto the surface of c‐PS microspheres by varying the polymerization time or the initial quantity of pendant butenyl group on the surface of c‐PS microspheres. Investigation on the morphology and crystallization behavior of grafted PE chains showed that different surface patterns could be formed under various crystallization conditions. Moreover, the crystallization temperature of PE chains grafted on the surface of c‐PS microspheres was 6 °C higher than that of pure PE. The c‐PS microspheres decorated by PE chains had a better compatibility with PE matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4477–4486, 2007  相似文献   

15.
Several kinds of liposomes were sterilized at 121 degrees C for 20 min. They tended to aggregate after heat sterilization (HS) in saline, while no aggregation was observed in an isotonized sugar or polyol solution. The dispersions containing egg phosphatidylcholine (EggPC) with a high peroxide value (POV) turned slightly yellowish after HS. This color change was prevented by using EggPC with a low POV, hydrogenated EggPC (H-EggPC) or dipalmitoylphosphatidylcholine (DPPC). Nitrogen gas bubbling at neutral pH also prevented the color change, but vitamin E did not. The particle size of the EggPC liposomes extruded through a 0.4 micron membrane filter did not change significantly after HS, whereas the H-EggPC or DPPC liposomes extruded through a 0.8 micron membrane filter tended to be reduced in size. On this change the type of medium had a considerable influence. The anionic 6-carboxyfluorescein leaked from the negatively charged liposomes (EggPC/cholesterol (Chol)/egg phosphatidylglycerol) during HS, while no leakage was observed from the positively charged liposomes (EggPC/Chol/stearylamine) not only during HS but also during a long period of storage. It was suggested that sterilization of liposomes by heating was practicable as well as that by filtration, if the liposomes were prepared as follows: the charged liposomes made of lipids with low POV's were dispersed in a sugar or polyol solution adjusted to nearly pH 6.5, where the amount of dissolved oxygen was minimized. An ionic water-soluble drug had to be encapsulated in the oppositely charged liposomes.  相似文献   

16.
Blends of ethylene‐glycidyl methacrylate copolymer (PE‐GMA) and polyamide 6 (PA6) were prepared in a corotating twin screw extruder. Two processing temperatures were used in order to disperse PA6 in two forms: at high temperature in the molten state in molted PE‐GMA Matrix (emulsion type mixture) and at lower temperature as fillers in molted PEGMA matrix (suspension type mixture). Processed blends were analyzed by scanning electron microscopy and dynamic mechanical experiments to probe the reactivity in the extruder and the compatibilization phenomena. The dependence of the morphology and the rheological properties of PE‐GMA/PA6 blends on blend composition and screw rotational speed was also investigated and is discussed in the paper. The results show that dispersion of the two polymers in the molten state leads to a higher level of interfacial reaction. They also show that whatever the screw rotational speed and the temperature of extrusion are, the rate of interfacial reaction in PE‐GMA/PA6 blends is higher for 50/50 PE‐GMA/PA blends than for 70/30 PE‐GMA/PA blends. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
王娟  常怡光  孙润广 《化学学报》2012,70(5):599-605
研究了不同比例下胆固醇(Chol)对磷脂酰乙醇胺/磷脂酰胆碱(PE/PC,1∶1物质的量比)混合膜的影响,并在表面压力-平均分子面积(π-A曲线)等温线基础上,通过对过量平均分子面积(ΔAex)和过量吉布斯自由能(ΔGex)的计算分析,研究了不同比例Chol与PE/PC(1∶1物质的量比)三元混合膜的热力学特性.实验结果表明:Chol在一定程度上加速了混合膜的相变,增强了膜的凝聚性;当XChol=0.2,0.6,0.8时,过量平均分子面积和过量吉布斯自由能在所研究的表面压力下都为负值,分子之间相互作用力表现为引力,促使混合膜的凝聚,而在XChol=0.4时,过量平均分子面积和过量吉布斯自由能在15,20,25,30 mN/m下为正值,分子之间相互作用力表现为斥力,促使熵的增加,并且在20 mN/m压力下出现极值.实验中利用LB膜技术制备了不同比例Chol与PE/PC(1∶1物质的量比)混合膜,并在原子力显微镜下对其结构形态进行了观测.  相似文献   

18.
The conformation of peptide and protein drugs in various microenvironments and the interaction with drug carriers such as liposomes are of considerable interest. In this study the influence of microenvironments such as pH, salt concentration, and surface charge on the secondary structure of a model protein, lysozyme, either in solution or entrapped in liposomes with various molar ratios of phosphatidylcholine (PC):cholesterol (Chol) was investigated. It was found that entrapment efficiency was more pronounced in negatively charged liposomes than in non-charged liposomes, which was independent of Chol content and pH of hydration medium. The occurrence of aggregation, decrease in zeta potential, and alteration of 31P NMR chemical shift of negatively charged lysozyme liposomes compared to blank liposomes suggested that the electrostatic interaction plays a major role in protein–lipid binding. Addition of sodium chloride could impair the neutralizing ability of positively charged lysozyme on negatively charged membrane via chloride counterion binding. Neither lysozyme in various buffer solutions with sodium chloride nor that entrapped in liposomes showed any significant change in their secondary structures. However, significant decrease in α-helical content of lysozyme in non-charged liposomes at higher pH and salt concentrations was discovered.  相似文献   

19.
Anionic phospholipids phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylinositol (PI), and phosphatidylserine (PS) were examined for their effect on 1-palmitoyl-2-oleyl-sn-glycero-3-phosphatidylcholine (POPC)-containing liposomes used as coating material in capillary electrochromatography. Liposome solvent was N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES) buffer at pH 7.4 with and without 3 mM of CaCl2. The background electrolyte solution was HEPES buffer at pH 7.4. The net charge, size, and short-term stability of the liposomes were measured with a Zetasizer. Results showed that calcium interacts with all liposomes but most strongly with POPC/PA. The relative migration times, retention factors, and resolution of the model analytes (one cationic, three uncharged ions, and one anionic) were studied. All liposomes successfully coated the silica capillary. Without calcium the strongest interaction and best separation of the analytes were with the POPC/PI and POPC/PS coatings, while interactions with the POPC/PA coating were weak. Calcium enhanced the interactions of the model analytes with all coatings, and the interactions were then strongest with the POPC/PA coating. In the presence of calcium there appears to be a slight reorganization of the coating with increasing number of runs. Our results indicate strong interactions between calcium and the phosphate groups in phospholipids and demonstrate the significant role of the phospholipid polar head group in phospholipid coatings on silica surfaces.  相似文献   

20.
The integrity of liposomes when dispersed in presence of various common formulation excipients is studied. Additionally, the effect of the excipients on the release of calcein from the same liposomes when dispersed in hydrogels is investigated and the results of the two sets of experiments are compared. Propyleneglycol (PG), transcutol CG (TR), cremophor EL (CR) and labrafac hydro WL 1219 (LB) are used at 10 or 25% (v/v) and the retention of liposome encapsulated calcein is followed for 24 or 48 h periods. Calcein entrapping multilamellar liposomes composed of phosphatidylcholine (PC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) with or without addition of different amounts of cholesterol (Chol) were prepared by the thin film hydration method.

Experimental results reveal that liposomes are affected more by the excipients in the order: LB > CR > PG  TR. Particularly LB and in some cases also CR result in rapid release of most or the entire vesicle encapsulated dye. Addition of Chol in both PC and DSPC liposomes results in substantial increase of vesicle integrity in all cases. Concerning the release of calcein form the liposomal gels, from DSPC/Chol (1:1) liposomal gels calcein release was not affected by addition of 25% of TR or PG in all gels studied, but LB caused a significant increase in calcein release. However, from PC-liposomal gels even TR and PG (at 25%), increases calcein release.

Conclusively, the results of this study suggest that liposomes are protected from excipients when dispersed in gels compared to aqueous media. This should be taken into account when liposomal drug formulations are designed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号