首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In-situ/operando techniques have been developed for spectromicroscopic studies of heavy elements using hard X-rays with high transmittance in samples and long focal length of optical elements (i.e., long working distance) at photon energies >4 keV. On the other hand, in-situ measurements in the soft X-ray region for spectromicroscopic studies of light elements at deep inner shells and heavy elements at shallow inner shells face significant technical challenges due to several difficulties, including low transmittance and short focal lengths of optical elements. Scanning transmission X-ray microscopy (STXM) in the soft X-ray region is a promising technique for in-situ observation in comparison with other microscopic techniques using electrons and ions, considering its characteristics, such as high resolving power in energy and in space, low radiation damage, and two-dimensional (and three-dimensional) chemical state analysis using near-edge X-ray absorption fine structure.  相似文献   

2.
During the past decades, Li-ion batteries have been one of the most important energy storage devices. Large-scale energy storage requires Li-ion batteries which possess high energy density, low cost, and high safety. Other than advanced battery materials, in-depth understanding of the intrinsic mechanism correlated with cell reaction is also essential for the development of high-performance Li-ion battery. Advanced characterization techniques, especially neutron-based techniques,have greatly promoted Li-ion battery researches. In this review, the characteristics or capabilities of various neutron-based characterization techniques, including elastic neutron scattering, quasi-elastic neutron scattering, neutron imaging, and inelastic neutron scattering, for the related Li-ion-battery researches are summarized. The design of in-situ/operando environment is also discussed. The comprehensive survey on neutron-based characterizations for mechanism understanding will provide guidance for the further study of high-performance Li-ion batteries.  相似文献   

3.
The start of operations at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory heralded a new beginning for photon-science-based research capabilities in catalysis. This new facility builds on many years of pioneering work that was conducted at the NSLS synergistically by many scientists from academia, government labs, and industry. Over several decades, numerous discoveries in catalysis were driven through the emergence of an arsenal of tools at the NSLS that exploited the power of emerging X-ray methods encompassing scattering, spectroscopy, and imaging. In-situ and operando methodologies that coupled reactor environments directly with advanced analytical techniques paved a rapid path towards realizing an improved fundamental understanding at the frontiers of chemical science challenges of the day.  相似文献   

4.
Scientific research data provides unique challenges that are distinct from classic “Big Data” sources. One common element in research data is that the experiment, observations, or simulation were designed, and data were specifically acquired, to shed light on an open scientific question. The data and methods are usually “owned” by the researcher(s) and the data itself might not be viewed to have long-term scientific significance after the results have been published. Often, the data volume was relatively low, with data sometimes easier to reproduce than to catalog and store. Some data and meta-data were not collected in a digital form, or were stored on antiquated or obsolete media. Generally speaking, policies, tools, and management of digital research data have reflected an ad hoc approach that varies domain by domain and research group by research group. This model, which treats research data as disposable, is proving to be a serious limitation as the volume and complexity of research data explodes. Changes are required at every level of scientific research: within the individual groups, and across scientific domains and interdisciplinary collaborations. Enabling researchers to learn about available tools, processes, and procedures should encourage a spirit of cooperation and collaboration, allowing researchers to come together for the common good. These community-oriented efforts provide the potential for targeted projects with high impact.  相似文献   

5.
6.
Jun Kang 《中国物理 B》2022,31(10):107105-107105
The growing worldwide energy needs call for developing novel materials for energy applications. Ab initio density functional theory (DFT) calculations allow the understanding and prediction of material properties at the atomic scale, thus, play an important role in energy materials design. Due to the fast progress of computer power and development of calculation methodologies, DFT-based calculations have greatly improved their predictive power, and are now leading to a paradigm shift towards theory-driven materials design. The aim of this perspective is to introduce the advances in DFT calculations which accelerate energy materials design. We first present state-of-the-art DFT methods for accurate simulation of various key properties of energy materials. Then we show examples of how these advances lead to the discovery of new energy materials for photovoltaic, photocatalytic, thermoelectric, and battery applications. The challenges and future research directions in computational design of energy materials are highlighted at the end.  相似文献   

7.
8.
9.
陈骏  文豪华  鲁兰原  范俊 《中国物理 B》2016,25(1):18707-018707
Membrane curvature is no longer thought of as a passive property of the membrane; rather, it is considered as an active, regulated state that serves various purposes in the cell such as between cells and organelle definition. While transport is usually mediated by tiny membrane bubbles known as vesicles or membrane tubules, such communication requires complex interplay between the lipid bilayers and cytosolic proteins such as members of the Bin/Amphiphysin/Rvs(BAR) superfamily of proteins. With rapid developments in novel experimental techniques, membrane remodeling has become a rapidly emerging new field in recent years. Molecular dynamics(MD) simulations are important tools for obtaining atomistic information regarding the structural and dynamic aspects of biological systems and for understanding the physics-related aspects. The availability of more sophisticated experimental data poses challenges to the theoretical community for developing novel theoretical and computational techniques that can be used to better interpret the experimental results to obtain further functional insights. In this review, we summarize the general mechanisms underlying membrane remodeling controlled or mediated by proteins. While studies combining experiments and molecular dynamics simulations recall existing mechanistic models, concurrently, they extend the role of different BAR domain proteins during membrane remodeling processes. We review these recent findings, focusing on how multiscale molecular dynamics simulations aid in understanding the physical basis of BAR domain proteins, as a representative of membrane-remodeling proteins.  相似文献   

10.
The structure-activity relationship of functional materials is an everlasting and desirable research question for material science researchers,where characterization and calculation tools are the keys to deciphering this intricate relationship.Here,we choose rechargeable battery materials as an example and introduce the most representative advanced characterization and calculation methods in four different scales:real space,energy,momentum space,and time.Current research methods to study battery material structure,energy level transition,dispersion relations of phonons and electrons,and time-resolved evolution are reviewed.From different views,various expression forms of structure and electronic structure are presented to understand the reaction processes and electrochemical mechanisms comprehensively in battery systems.According to the summary of the present battery research,the challenges and perspectives of advanced characterization and calculation techniques for the field of rechargeable batteries are further discussed.  相似文献   

11.
Activated processes from chemical reactions up to conformational transitions of large biomolecules are hampered by barriers which are overcome only by the input of some free energy of activation. Hence, the characteristic and rate-determining barrier regions are not sufficiently sampled by usual simulation techniques. Constraints on a reaction coordinate r have turned out to be a suitable means to explore difficult pathways without changing potential function, energy or temperature. For a dense sequence of values of r, the corresponding sequence of simulations provides a pathway for the process. As only one coordinate among thousands is fixed during each simulation, the pathway essentially reflects the system’s internal dynamics. From mean forces the free energy profile can be calculated to obtain reaction rates and and insight in the reaction mechanism. In the last decade, theoretical tools and computing capacity have been developed to a degree where simulations give impressive qualitative insight in the processes at quantitative agreement with experiments. Here, we give an introduction to reaction pathways and coordinates, and develop the theory of free energy as the potential of mean force. We clarify the connection between mean force and constraint force which is the central quantity evaluated, and discuss the mass metric tensor correction. Well-behaved coordinates without tensor correction are considered. We discuss the theoretical background and practical implementation on the example of the reaction coordinate of targeted molecular dynamics simulation. Finally, we compare applications of constraint methods and other techniques developed for the same purpose, and discuss the limits of the approach.  相似文献   

12.
Human habitation is dependent on the chemical and physical processes that shape Earth's surface environment and control the transport, cycling, and chemical form of elements. The challenges facing society concerning water, energy, climate change, and health require a molecular-scale understanding of these processes. It is not surprising therefore that synchrotron radiation (SR) techniques have become essential research tools for the molecular environmental science (MES) and low-temperature geochemistry (LTG) communities as they address critical needs for society.  相似文献   

13.
In this paper, we present the structure and the dynamics of highly charged heavy ions studied through dielectronic recombination (DR) observations performed with the Tokyo electron beam ion trap. By measuring the energy dependence of the ion abundance ratio in the trap at equilibrium, we have observed DR processes for open shell systems very clearly. Remarkable relativistic effects due to the generalized Breit interaction have been clearly shown in DR for highly charged heavy ions. We also present the first result for the coincidence measurement of two photons emitted from a single DR event.  相似文献   

14.
Driven by synergic advancements in high performance computing and theory, the capability to estimate rate constants from first principles has evolved considerably recently. When this knowledge is coupled with a procedure to determine a list of all reactions relevant to describe the evolution of a reacting system, it becomes possible to envision a methodology to predict theoretically the reaction kinetics. However, if a thorough examination of all possible reaction channels is desired, the number of reactions for which a rate constant estimate is needed can become quite large. This determines the need for rate constant estimation automation. In the present work, the status of this rapidly evolving field is reviewed, with emphasis on recent advancements and present challenges. Thermochemistry is the field where automation is most advanced. Entropies, heat capacities, and enthalpies can be determined efficiently with accuracy comparable to experiments for most chemical species containing a limited number of atoms, while machine learning can be used to improve the computational predictions for large chemical species using reduced computational resources. Several approaches have been proposed to automatically investigate the reactivity over complex potential energy surfaces, while rate constants for elementary steps can be determined accurately for several reaction classes, such as abstraction, addition, beta-scission, and isomerization. Kinetic mechanisms can be automatically generated using methodologies that differ for level of complexity and required physical insight. Among the challenges that are still to be met are the estimation of rate constants for intrinsically multireference reaction classes, such as barrierless processes, the containment of the number of reactions to screen in mechanism development, and the integration of the existing automated software. It is suggested that the synergy between experiment and theory should evolve towards a stage where experiments are focused on the estimation of parameters where theoretical tools are least predictive, and vice versa.  相似文献   

15.
严鹏  王向荣 《物理学进展》2011,31(3):161-167
本文介绍微磁动力学领域的一个最新进展,我们的研究发现在磁场驱动下且保持畴结构不变地沿着纳米磁线运动的磁畴壁,其运动源于能量耗散,磁畴壁运动速度正比于能量耗散率。与此同时,我们根据能量守恒原则,给出了磁畴壁速度的一个合理定义,该定义适用于任意的磁畴壁结构。在此定义下,即使磁畴壁没有做刚性运动,我们也能得到磁畴壁运动的瞬时速度和平均速度。我们的结果不仅能重复低磁场下的沃克(Walker)解,还能反映出当磁场高于沃克极限(Walker limit)时速度{磁场的依赖关系,该结果跟数值模拟和实验数据都符合得很好。我们根据微磁动力学研究的这一新进展,最终澄清了一个事实即“磁畴壁质量”这个概念是错误的。  相似文献   

16.
Storage rings operating at ultra-low energies and in particular electrostatic storage rings have proven to be invaluable tools for atomic and molecular physics. Due to the mass independence of the electrostatic rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged bio-molecules. However, earlier measurements showed strong limitations on beam intensity, fast decay of ion current, reduced life time etc. The nature of these effects was not fully understood. Also a large variety of experiments in future generation ultra-low energy storage and decelerator facilities including in-ring collision studies with a reaction microscope require a comprehensive investigation of the physical processes involved into the operation of such rings. In this paper, we present review of non-linear and long term beam dynamics studies on example of the ELISA, AD Recycler, TSR and USR rings using the computer codes BETACOOL, OPERA-3D and MAD-X. The results from simulations were benchmarked against experimental data of beam losses in the ELISA storage ring. We showed that decay of beam intensity in ultra-low energy rings is mainly caused by ion losses on ring aperture due to multiple scattering on residual gas. Beam is lost on ring aperture due to small ring acceptance. Rate of beam losses increases at high intensities because of the intra-beam scattering effect adds to vacuum losses. Detailed investigations into the ion kinetics under consideration of the effects from electron cooling and multiple scattering of the beam on a supersonic gas jet target have been carried out as well. The life time, equilibrium momentum spread and equilibrium lateral spread during collisions with this internal gas jet target were estimated. In addition, the results from experiments at the TSR ring, where low intensity beam of CF+ ions at 93 keV/u has been shrunk to extremely small dimensions have been reproduced. Based on these simulations, conditions for stable ring operation with extremely low emittance beam are presented. Finally, results from studies into the interaction of ions with a gas jet target at 3–30 keV energy range are summarized.  相似文献   

17.
In the present paper we consider the deterministic escape dynamics of a dimer from a metastable state over an anharmonic potential barrier. The underlying dynamics is conservative and noiseless and thus, the allocated energy has to suffice for barrier crossing. The two particles comprising the dimer are coupled through a spring. Their motion takes place in a two-dimensional plane. Each of the two constituents for itself is unable to escape, but as the outcome of strongly chaotic coupled dynamics the two particles exchange energy in such a way that eventually exit from the domain of attraction may be promoted. We calculate the corresponding critical dimer configuration as the transition state and its associated activation energy vital for barrier crossing. It is found that there exists a bounded region in the parameter space where a fast escape entailed by chaotic dynamics is observed. Interestingly, outside this region the system can show Fermi resonance which, however turns out to impede fast escape.  相似文献   

18.
Silicon, an attractive candidate for high-energy lithium-ion batteries (LIBs), displays an alloying mechanism with lithium and presents several unique characteristics which make it an interesting scientific topic and also a technological challenge. In situ local probe measurements have been recently developed to understand the lithiation process and propose an effective remedy to the failure mechanisms. One of the most specific techniques, which is able to follow the phase changes in poorly crystallized electrode materials, makes use of Raman spectroscopy within the battery, i.e., in operando mode. Such an approach has been successful but is still limited by the rather signal-to-noise ratio of the spectroscopy. Herein, the operando Raman signal from the silicon anodes is enhanced by plasmonic nanoparticles following the known surface-enhanced Raman spectroscopy (SERS). Coinage metals (Ag and Au) display a surface plasmon resonance in the visible and allow the SERS effect to take place. We have found that the as-prepared materials reach high specific capacities over 1000 mAh/g with stability over more than 1000 cycles at 1C rate and can be suitable to perform as anodes in LIB. Moreover, the incorporation of coinage metals enables SERS to take place specifically on the surface of silicon. Consequently, by using a specially designed Raman cell, it is possible to follow the processes in a silicon-coinage metal-based battery trough operando SERS measurements.  相似文献   

19.
20.
The ability to characterise and control matter far away from equilibrium is a frontier challenge facing modern science. In this article, we sketch out a heuristic structure for thinking about the different ways in which non-equilibrium phenomena can impact molecular reaction dynamics. Our analytical schema includes three different regimes, organised according to increasing dynamical resolution: at the lowest resolution, we have conformer phase space, at an intermediate resolution, we have energy space; and at the highest resolution, we have mode space. Within each regime, we discuss practical definitions of non-equilibrium phenomena, mostly in terms of the corresponding relaxation timescales. Using this analytical framework, we discuss some recent non-equilibrium reaction dynamics studies spanning isolated small-molecule ensembles, gas-phase ensembles and solution-phase ensembles. This includes new results that provide insight into how non-equilibrium phenomena impact the solution-phase alkene–hydroboration reaction. We emphasise that interesting non-equilibrium dynamical phenomena often occur when the relaxation timescales characterising each regime are similar. In closing, we reflect on outstanding challenges and future research directions to guide our understanding of how non-equilibrium phenomena impact reaction dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号