首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High resolution transmission electron microscopic (HRTEM) studies of some typical mesoporous molecular sieves, such as MCM-41, SBA-2 and STAC-1, etc. are presented. Since the materials consist of amorphous silica and their unit cell dimensions are in a range of 1.5 to over 10 nm, the conventional X-ray diffraction method gives us very limited information about the detailed structures. On the other hand, HRTEM has been found to be the most powerful technique to detect the local structures and to image metal clusters inside the channels of these materials.  相似文献   

2.
Cellulose nanocrystals (CNCs) have high aspect ratios, polydisperse size distributions, and a strong propensity for aggregation, all of which make them a challenging material for detailed size and morphology characterization. A CNC reference material produced by sulfuric acid hydrolysis of softwood pulp was characterized using a combination of dynamic light scattering (DLS), atomic force microscopy (AFM), transmission electron microscopy, and X-ray diffraction. As a starting point, a dispersion protocol using ultrasonication was developed to provide CNC suspensions with reproducible size distributions as assessed by DLS. Tests of various methods for AFM sample preparation demonstrated that spin coating on a positively charged substrate maximizes the number of individual particles for size analysis, while minimizing the presence of agglomerates. The effects of sample-to-sample variability, analyst bias, and sonication on size distributions were assessed by AFM. The latter experiment indicated that dispersion of agglomerates by sonication did not significantly change the size distribution of individual CNCs in suspension. Comparison with TEM data demonstrated that the two microscopy methods provide similar results for CNC length (mean ~?80 nm); however, the particle width as measured by TEM is approximately twice that of the CNC height (mean 3.5 nm) measured by AFM. The individual crystallite size measured by X-ray diffraction is intermediate between the two values, although closer to the AFM height, possibly indicating that laterally agglomerated CNCs contribute to the TEM width. Overall, this study provides detailed information that can be used to assess the factors that must be considered in measuring CNC size distributions, information that will be useful for benchmarking the performance of different industrially sourced materials.  相似文献   

3.
《Comptes Rendus Physique》2018,19(7):575-588
Synchrotron-based techniques are increasingly used in the field of cultural heritage, and this review focuses notably on the application of nano-beams to access high-spatial-resolution information on fragments sampled in historical or model artworks. Depending on the targeted information, various nano-analytical techniques can be applied, providing both identification and localization of the various components. More precisely, nano-X-ray fluorescence probes elements, nano-X-ray diffraction identify crystalline phases, and nano X-ray absorption spectroscopy is sensitive to speciation. Furthermore, computed tomography-based techniques can provide useful information about the morphology and in particular the porosity of materials.  相似文献   

4.
Surface nanostructuring of engineering materials can be utilised to enhance materials performance for various applications. The aim of this work was to investigate the evolution of microstructure and its correlation with strengthening mechanisms in nanocrystalline commercially pure titanium (cp-Ti) produced by surface mechanical attrition treatment (SMAT). The individual contributions of dislocation slip and twining as the deformation mechanisms during SMAT have been quantified using X-ray line profile analysis and corroborated with transmission electron microscopy and electron backscattered diffraction techniques. It is found that twining is operative only in the early stages of deformation. The absence of twin–twin intersections suggests that twining is not directly responsible for the initial refinement of grain size. Dislocation slip is the major deformation mode, which leads to the refinement of the microstructure by forming low-angle lamellar boundaries. Continuous dynamic recrystallisation is demonstrated to be the mechanism of nanocrystallisation in cp-Ti using detailed microscopic analysis. In contrast to previous studies, which have neglected the contribution of Taylor strengthening, it is observed that a combination of Hall–Petch and Taylor relationships can explain the strength only if separate set of parameters K (Hall–Petch constant) and α (geometrical factor in Taylor relationship) are used for the nanocrystalline surface and severely deformed sub-surface of cp-Ti. Taken together, this work provides new insights into the underlying mechanisms for engineering nanocrystalline materials.  相似文献   

5.
利用瞬态X射线衍射技术对LiF单晶沿晶向[100]方向冲击加载的晶格变形进行了诊断研究。实验在神光Ⅱ装置的球形靶上进行,北四路激光驱动Cu靶获得的类He线作为X射线背光源,第九路为加载光源,对大小为7mm×7mm、厚300μm的受激光加载的LiF单晶衍射,实验获得了LiF单晶晶面(200)压缩和未压缩状态的衍射信号。实验结果表明:LiF单晶在激光沿[100]方向冲击加载下,晶格发生了弹性变形,(200)晶面间距变小,衍射线上移,晶格压缩量为11%;该瞬态X射线衍射技术可用于冲击加载下的微观动态响应特性测量。  相似文献   

6.
7.
闪光X射线衍射成像系统设计及实验方法   总被引:2,自引:0,他引:2  
为实现材料在冲击加载下微观动力学响应测量,基于小型闪光X射线源开展衍射成像系统设计.利用直流X光机及高纯锗探测器实现系统衍射光路的精确调节,克服了闪光X射线瞬时强度高及连续辐射本底强导致的衍射角度确定困难,并采用Scandiflash AB公司TD-450S和成像板建立了衍射成像系统.应用该系统在冲击加载实验中获得了LiF单晶单脉冲的Mo-Kα线静态及动态衍射图像.该闪光X射线衍射系统时间分辨率可达25ns,为冲击压缩实验中材料瞬时结构变化测量提供了新的实验方法.  相似文献   

8.
湿化学反应法制备了CaCuxMn3-xMn4 O12(x=0.2,0.4,0.6,0.8,1.0,1.2,1.4)系列材料的前驱体,然后通过高温烧结做成样品,进一步丰富了这类样品的研究内容.X射线衍射表明掺杂Cu2+在x=0.2到x=1.4范围内这些材料都能够成单相.通过Rietveld全谱拟合的方法分析,结果表明随掺...  相似文献   

9.
Polycrystalline bulk materials of Bi93Sb7 Bi88Sb12, Bi85Sb15 and Bi80Sb20 were synthesized by melt-quench technique starting from the stoichiometric mixture of constituent elements. The phase purity and compositional uniformity of bulk materials were investigated using powder X-ray diffraction (XRD) and proton induced X-ray emission (PIXE) experiments. The single phase formation and the compositional analysis of thin films were confirmed by transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS). X-ray diffraction studies confirmed the phase homogeneity of the materials. Atomic concentration ratio of constituent elements (Bi and Sb) determined by PIXE and RBS revealed that near-stoichiometric composition is nearly the same in the bulk as well as in thin film forms.  相似文献   

10.
传统X射线数字成像方法通常固定X光机参数,但是受工件结构及材料衰减系数和光电器件物理动态范围的制约,当同一场景中透射X射线通量的最大值和最小值超出成像器件动态范围时,会出现通量大的区域高于成像器件的电荷容纳能力而达到饱和状态,当通量低的区域产生的光电荷低于设备热噪声水平时,该区域信息将淹没在噪声中而无法正常成像。为有效解决传统X射线数字成像技术在获取宽动态范围透射X光通量内容时的局限性,提出一种管电压递变高动态成像方法。首先分析了光电探测器电荷容量对有效透照厚度范围的影响;结合标准样块试验及相关数据分析,得到任意厚度特定材质试块达到最佳灵敏度时对应的透照X光管电压范围的关系函数,在此基础上提出管电压递变控制策略和有效子图提取方法。最终对0~20 mm厚度范围工件进行管电压递变高动态成像,结果表明:管电压递变高动态成像能够有效地实现透照厚度差异大的工件的高动态范围成像,最终融合结果能够保留较宽范围厚度上的细节信息。  相似文献   

11.
Study of diluted magnetic semiconductor nanowires is one of the important topics in materials science. By using Mn-Cu alloy as the starting material, Mn doped CuO nanowire arrays have been synthesized in air at the temperature of 550 °C. X-ray diffraction measurements and scanning electron microscopic study shows that the nanowires were grown on Cu2O substrate. Transmission electron microscopic study shows the single crystal property of the nanowires. Magnetic measurements show ferromagnetic property in the Mn doped CuO nanowires with the critical temperature higher than 80 K.  相似文献   

12.
对于晶格结构响应的仿真与实验有助于我们理解激光激发引起的动态过程.利用一维原子链模型研究了激光加热后由于温度分布不均匀性产生的热应力对晶格的影响,该模型的计算结果与使用超快X射线衍射获得的实验结果相符合.该模型为研究光激发金属以及半导体等材料的超快晶格动力学提供了理论分析基础.  相似文献   

13.
The volume, shape and microstructure of solids can be influenced by magnetic fields. Much effort is focused on magnetic shape memory (MSM) materials. Recently, the MSM effect has been discovered to occur also in the paramagnetic state, e.g. in RCu2 compounds (R = rare earth). RMSM materials distinguish themselves from conventional MSM materials by the new origin of the magnetoic anisotropy: the strong rare-earth single ion anisotropy. Due to the pseudo-hexagonal symmetry of RCu2, three orientational variants exists, each of them rotated by about 60 deg with respect to the others. Switching these variants by an external field results in a change of the macroscopic shape. The strain is in the order of one percent (= Giant MagnetoStrain). The variant's fraction remains unchanged when ramping down the field. The virgin state can be recovered by heating or by a perpendicularly directed field. We present temperature and field dependent measurements of magnetostrain and magentization at the model substance Tb0.5Dy0.5Cu2. The macroscopic characterization of the sample is complemented by a detailed microscopic analysis done by elastic neutron scattering. Although the GMS effect of RCu2 was worked out at single crystals, the principle of this magneto-mechanical coupling phenomenon is also useful for polycrystalline or microscaled applications. The existence of this structural irreversibility shows the potential to construct field controlled actuators or switches.  相似文献   

14.
X-ray diffraction studies of Eu2(MoO4)3 single crystals were performed, which demonstrate that, in contrast to polycrystalline samples, these crystals do not exhibit amorphous-like diffraction patterns during the reverse transition from the high-pressure phase into the initial β phase; rather, the diffracted intensity in their diffraction patterns decreases significantly to the background. Such a diffraction pattern can be explained under the assumption that a single crystal is divided into small (nanoscopic) regions inside which the lattice parameters of the high-pressure phase and the initial β phase change continuously. The simultaneous recovery of the single-crystal state of the β phase from this intermediate state in all nanoscopic regions as the annealing temperature increases indicates that nanocrystals in this state are structurally correlated with each other. This result suggests that the halo-type diffraction patterns of polycrystalline samples reflect an intermediate state between the high-pressure phase and the β phase in every initial crystallite (as in the single crystals) rather than being caused by an amorphous structure of the sample. In this case, the total diffraction pattern of differently oriented crystallites gives an amorphous-like diffraction pattern reflecting the contributions from numerous various crystallographic planes involved in diffraction.  相似文献   

15.
Recent materials research has advanced the maximum ferromagnetic transition temperature in semiconductors containing magnetic elements toward room temperature. Reaching this goal would make information technology applications of these materials likely. In this article we briefly review the status of work over the past five years which has attempted to achieve a theoretical understanding of these complex magnetic systems. The basic microscopic origins of ferromagnetism in the (III,Mn)V compounds that have the highest transition temperatures appear to be well understood, and efficient computation methods have been developed which are able to model their magnetic, transport, and optical properties. However many questions remain.  相似文献   

16.
薄膜、多层膜和一维超点阵材料的X射线分析新进展   总被引:9,自引:0,他引:9  
杨传铮 《物理学进展》1999,19(2):183-216
X射线散射和衍射对于厚度为几个原子层到几十微米的薄膜材料是灵敏的。一般而言,X射线方法是非破坏性的,其中不要求样品制备,它们提供恰如其分的技术路线,以获得薄膜材料的结构等信息;分析能对从完整单晶膜和多晶膜到非晶膜的所有材料进行。本文评述了用X射线方法表征和研究这类薄膜材料的新进展。全文包括引论、常用的X射线方法、原子尺度薄膜的研究、工程薄膜和多层膜的研究、一维超点阵结构研究、超点阵界面粗糙度的X射线散射理论、不完整性和应变的衍射空间图或倒易空间图研究七个部分  相似文献   

17.
Steps on single crystal surfaces have been shown to cause changes of various physical properties and to influence the behaviour towards chemical reactions. A proper knowledge of the step structure is required for the understanding of these phenomena. The following investigation concentrates on a detailed evaluation of the LEED patterns of various stepped tungsten surfaces. A formula is given for determining the terrace width of ordered step arrays from any diffraction order. Step height, step orientation, terrace width and the sample orientation have been deduced from the LEED patterns and the experimental errors involved are being discussed. The step height can be determined within 1% and the terrace width within 1 to 3% depending on the step density. It is concluded that the determination of the sample orientation as obtained from the LEED pattern is at least as precise as by using the Laue X-ray back reflection technique.  相似文献   

18.
For the non-destructive identification of pigments and colorants in works of art, in archaeological and in forensic materials, a wide range of analytical techniques can be used. Bearing in mind that every method holds particular limitations, two complementary spectroscopic techniques, namely confocal μ-Raman spectroscopy (μ-RS) and μ-X-ray fluorescence spectroscopy (μ-XRF), were joined in one instrument. The combined μ-XRF and μ-RS device, called PRAXIS unites both complementary techniques in one mobile setup, which allows μ- and in situ analysis. μ-XRF allows one to collect elemental and spatially-resolved information in a non-destructive way on major and minor constituents of a variety of materials. However, the main disadvantages of μ-XRF are the penetration depth of the X-rays and the fact that only elements and not specific molecular combinations of elements can be detected. As a result μ-XRF is often not specific enough to identify the pigments within complex mixtures. Confocal Raman microscopy (μ-RS) can offer a surplus as molecular information can be obtained from single pigment grains. However, in some cases the presence of a strong fluorescence background limits the applicability. In this paper, the concrete analytical possibilities of the combined PRAXIS device are evaluated by comparing the results on an illuminated sheet of parchment with the analytical information supplied by synchrotron radiation μ-X-ray diffraction (SR μ-XRD), a highly specific technique. PACS  33.20.Fb; 61.05.cp; 33.20.Rm; 07.85.Qe; 91.65.An  相似文献   

19.
Scientists and engineers are increasingly using synchrotron radiation, largely due to its special characteristics, including high flux (intensity, high temporal resolution), low divergence (high spatial resolution, efficient focusing), linear polarization, and high penetration power. While surface-sensitive optical, electron microscopy and certain X-ray techniques (grazing incidence diffraction, reflectivity) tackle many problems, materials engineering largely relies on the volume properties of materials: residual strains and textures in the interior of building structures, overall phase composition, slip systems, etc.  相似文献   

20.
Historical beeswax seals are unique cultural heritage objects. Unfortunately, a number of historical sealing waxes show a porous structure with a strong tendency to stratification and embrittlement, which makes these objects extremely prone to mechanical damage. The understanding of beeswax degradation processes therefore plays an important role in the preservation and consequent treatment of these objects. Conventional methods applied for the investigation of beeswax materials (e.g. gas chromatography) are of a destructive nature or bring only limited information about the sample surface (microscopic techniques). Considering practical limitations of conventional methods and ethical difficulties connected with the sampling of the historical material, radiation imaging methods such as X-ray micro-tomography presents a promising non-destructive tool for the onward scientific research in this field. In this contribution, we present the application of high-contrast X-ray micro-radiography and micro-tomography for the investigation of beeswax seal fragments. The method is based on the application of the large area photon-counting detector recently developed at our institute. The detector combines the advantages of single-photon counting technology with a large field of view. The method, consequently, enables imaging of relatively large objects with high geometrical magnification. In the reconstructed micro-tomographies of investigated historical beeswax seals, we are able to reveal morphological structures such as stratification, micro-cavities and micro-fractures with spatial resolution down to 5 μm non-destructively and with high imaging quality. The presented work therefore demonstrates that a combination of state-of-the-art hybrid pixel semiconductor detectors and currently available micro-focus x-ray sources makes it possible to apply X-ray micro-radiography and micro-tomography as a valuable non-destructive tool for volumetric beeswax seal morphological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号