首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this study, the tractive rolling contact problem between a rigid cylinder and a graded coating is investigated. The main objective of this study is to investigate the effect of the stiffness ratio, the coefficient of friction and the coating thickness on the surface contact tractions, the surface in-plane stress, the stick zone length and the creep ratio parameter that may have a bearing on the fatigue life of the component. Assuming that the shear modulus varies exponentially through the thickness of the coating, the governing integral equations associated with the rolling contact problem are constructed. Furthermore, it is supposed that the contact patch is controlled by a central stick zone accompanied by two slip zones. The conventional Goodman approximation is employed in order to decouple the governing singular integral equations. Finally, the numerical solution of the integral equations is obtained by applying the Gauss–Chebyshev integration method.  相似文献   

2.
两圆柱体结合面的接触热导分形模型研究   总被引:1,自引:0,他引:1  
基于三维分形理论,在考虑微凸体的弹性变形、弹塑性变形和塑性变形的基础上,建立了两圆柱体结合面接触热导分形模型。通过数值仿真,分析了分形维数,分形尺度参数、圆柱体曲率半径和接触类型对接触热导的影响。研究结果表明:接触热导随着分形维数的增大而增大,随着分形尺度参数的增大而减小;相同参数下,内接触比外接触的接触热导要大;此外,当固定其中一个圆柱体的曲率半径时,随着另一个圆柱体曲率半径的增大,接触热导增大。该模型为开展齿轮等曲面接触热导的研究提供了理论基础。  相似文献   

3.
The deformation of a single wall carbon nanotube (SWCNT) interacting with a curved bundle of nanotubes is analyzed. The SWCNT is modeled as a straight elastic inextensible beam based on small deformation. The bundle of nanotubes is assumed rigid and the interaction is due to the van der Waals forces. An analytical solution is obtained using a bilinear approximation to the van der Waals forces. The analytical results are in good agreement with the results of two numerical methods. The results indicate that the SWCNT remains near the curved bundle provided that its curvature is below a critical value. For curvatures above this critical value the SWCNT breaks contact with the curved bundle and nearly returns to its straight position. A parameter study shows that the critical curvature depends on the stiffness of the SWCNT and the absolute minimum energy associated with the van der Waals forces but it is independent of the SWCNT's length in general. An analytical estimate of the critical curvature is developed. The results of this study may be applicable to composites of nanotubes where separation phenomena are suspected to occur.  相似文献   

4.
基于Euler-Bernoulli梁的几何非线性理论,建立了弹性曲梁在任意分布机械载荷和热载荷共同作用下的几何非线性静平衡控制方程。该模型不仅计及了轴线伸长,同时也精确地考虑了梁的初始曲率对变形的影响以及轴向变形与弯曲变形之间的相互耦合效应。应用打靶法数值求解了半圆形曲梁在横向均匀升温作用下的非线性弯曲问题,数值比较了轴向伸长对曲梁变形的影响。  相似文献   

5.
 We derive the Euler-Lagrange equations for nonlinearly elastic rods with self-contact. The excluded-volume constraint is formulated in terms of an upper bound on the global curvature of the centre line. This condition is shown to guarantee the global injectivity of the deformation of the elastic rod. Topological constraints such as a prescribed knot and link class to model knotting and supercoiling phenomena as observed, e.g., in DNA-molecules, are included by using the notion of isotopy and Gaussian linking number. The bound on the global curvature as a nonsmooth side condition requires the use of Clarke's generalized gradients to obtain the explicit structure of the contact forces, which appear naturally as Lagrange multipliers in the Euler-Lagrange equations. Transversality conditions are discussed and higher regularity for the strains, moments, the centre line and the directors is shown. (Accepted December 20, 2002) Published online April 8, 2003 Communicated by S. S. Antman  相似文献   

6.
This paper derives a new three-dimensional (3-D) analytical solution for the indirect tensile tests standardized by ISRM (International Society for Rock Mechanics) for testing rocks, and by ASTM (American Society for Testing and Materials) for testing concretes. The present solution for solid circular cylinders of finite length can be considered as a 3-D counterpart of the classical two dimensional (2-D) solutions by Hertz in 1883 and by Hondros in 1959. The contacts between the two steel diametral loading platens and the curved surfaces of a cylindrical specimen of length H and diameter D are modeled as circular-to-circular Hertz contact and straight-to-circular Hertz contact for ISRM and ASTM standards respectively. The equilibrium equations of the linear elastic circular cylinder of finite length are first uncoupled by using displacement functions, which are then expressed in infinite series of some combinations of Bessel functions, hyperbolic functions, and trigonometric functions. The applied tractions are expanded in Fourier–Bessel series and boundary conditions are used to yield a system of simultaneous equations. For typical rock cylinders of 54 mm diameter subjected to ISRM indirect tensile tests, the contact width is in the order of 2 mm (or a contact angle of 4°) whereas for typical asphalt cylinders of 101.6 mm diameter subjected to ASTM indirect tensile tests the contact width is about 10 mm (or a contact angle of 12°). For such contact conditions, 50 terms in both Fourier and Fourier–Bessel series expansions are found sufficient in yielding converged solutions. The maximum hoop stress is always observed within the central portion on a circular section close to the flat end surfaces. The difference in the maximum hoop stress between the 2-D Hondros solution and the present 3-D solution increases with the aspect ratio H/D as well as Poisson’s ratio ν. When contact friction is neglected, the effect of loading platen stiffness on tensile stress in cylinders is found negligible. For the aspect ratio of H/D = 0.5 recommended by ISRM and ASTM, the error in tensile strength may be up to 15% for both typical rocks and asphalts, whereas for longer cylinders with H/D up to 2 the error ranges from 15% for highly compressible materials, and to 60% for nearly incompressible materials. The difference in compressive radial stress between the 2-D Hertz solution or 2-D Hondros solution and the present 3-D solution also increases with Poisson’s ratio and aspect ratio H/D. In summary, the 2-D solution, in general, underestimates the maximum tensile stress and cannot predict the location of the maximum hoop stress which typically locates close to the end surfaces of the cylinder.  相似文献   

7.
The large deformation torsion problem for an elastic circular cylinder subject to prescribed twisting moments at its ends is examined for a particular homogeneous isotropic compressible material, namely the Blatz-Ko material. For this material, the displacement equations of equilibrium in three-dimensional elastostatics can lose ellipticity at sufficiently large deformations. For the torsion problem, it is shown that this occurs when the prescribed torque reaches a critical value. For values of the twisting moment greater than this critical value, there is an axial core of the cylinder on which ellipticity holds, surrounded by an annular region where loss of ellipticity has occurred. The physical implications in terms of localized shear bands are briefly discussed.  相似文献   

8.
The aim of this study is to develop an approach of simulating the frictional contact dynamics of thin beams with large deformations and continuous contact zones of large size during their large overall motions. For this purpose, the thin beams are meshed via initially straight and gradient deficient thin beam elements of the absolute nodal coordinate formulation (ANCF) degenerated from a curved beam element of ANCF. A detection strategy for contact zone is proposed based on the combination of the minimal distance criterion and master-slave approach. By making use of the minimal distance criterion, the closest points of two thin beams can be found efficiently. The master-slave approach is employed to determine the continuous contact zone. The generalized frictional contact forces and their Jacobians are derived based on the principle of virtual work. Gauss integration is used to integrate the contact forces over the continuous contact zone. The generalized-alpha method is used to solve the dynamic equations of contacting beams. Numerical simulations of four static and dynamic contact problems, including those with continuous contact zones of large size, are completed to validate the high performance of the approach.  相似文献   

9.
吴迪  赵宝生 《应用力学学报》2012,29(4):349-352,481
为了得到精确的应力场、位移场、温度场,将扭转圆轴的精化理论研究方法推广到轴对称横观各向同性热弹性圆柱。利用Bessel函数以及轴对称横观各向同性热弹性圆柱的通解,给出了轴对称横观各向同性热弹性圆柱的分解定理。根据柱面齐次边界条件获得了精确的精化方程,精化方程可以分解为一阶方程、超越方程、温度方程,从而将横观各向同性热弹性圆柱的轴对称问题分解为轴向拉压问题、超越问题、热-应力耦合问题。超越部分对应端部自平衡情况,可以清晰地了解到端部应力分布对内部应力场的影响,热-应力耦合部分对应无外加应力场时圆柱内部因温度变化引起的热应力。  相似文献   

10.
A combination of a continuum approach and a particle–particle approach to describe the multi-scale nature of the mechanical properties of bulk solids may be beneficial to scientific and engineering applications. In this paper, a procedure is proposed to estimate the interparticle forces beginning with the bulk flow properties as measured with standardized techniques. In particular, the relationship between interparticle forces and bulk solid tensile strength is adopted based on the microscale approaches of Rumpf (1970) and Molerus (1975). The flow properties of fluid cracking catalyst (FCC), corundum and glass bead powders were all characterized with a modified Schulze ring shear cell capable of operating at temperatures up to 500 °C. The powder test conditions were selected such that the van der Waals forces were the most significant particle–particle interactions. The model equations describe two cases, in which either elastic or plastic deformation of the contact points is assumed. The results indicate that the model provides the correct order of magnitude for the values of the tensile strength when proper values for the mean curvature radius at the contact points are taken into account. A sensitivity analysis for the main parameters in the model was performed. This analysis indicated that the assumption of plastic deformation at contact surfaces coupled with a decrease in porosity justified an increase of the tensile strength with consolidation stress. Furthermore, the effect of temperature on the measured flow behavior can be explained as a change in the strength of the material.  相似文献   

11.
In recent years numerous studies on the high strain rate behaviour of sheet materials using split Hopkinson tensile bar set-ups have been reported in literature. For these experiments mostly dogbone-shaped specimens are used. However, widely divergent specimen dimensions can be found. In the present study the influence of this specimen geometry on the test results is investigated experimentally. An extensive series of Hopkinson tests on a steel sheet material using different specimen geometries is performed. An advanced optical technique is used to obtain the true distribution of the deformation along the length of the specimen. Important issues such as the contribution of the deformation of the transition zones to the total deformation and the (non-)homogeneity of the strain in the specimen are thus determined. From the experiments it is clear that the influence of the specimen geometry on the observed behaviour cannot be neglected. It is shown that inconsistencies between the assumed and real specimen behaviour account for these differences. For the TRIP steel considered in the study, accurate deformation values are only guaranteed if the length to width ratio of the central zone is larger than 1.25 and if the radius of the transition zone is sufficiently small.  相似文献   

12.
线接触弹性接触变形的解析算法   总被引:14,自引:1,他引:13  
以一般光滑性体接触理论为基础,结合有限长弹性体接触的特点,求出线接触弹性接蟹变形的解析公式,并发现其解析解与数值解具有很好的一致性,所得公式可以对赫兹线接触理论加以补充,与经验公式相比,它能够确切反映材料、载荷以及曲率半径等对接触变形的影响,为工程中的精确计算提供了方便。  相似文献   

13.
Rolling without slip by a rigid cylinder on a transversely isotropic, coupled thermoelastic half-space at constant subcritical speed is studied. The cylinder is of infinite length, surface heat convection is neglected, and a dynamic steady state of plane strain is treated. The unmixed problem of traction applied to a translating surface strip is addressed first. A robust asymptotic form of the exact transform solution, valid when Fourier heat conduction dominates any thermal relaxation effect, is extracted, and inverted analytically. Use of material characterization and identification of parameters that vanish in the isotropic limit or are invariant under an isothermal–thermoelastic transformation result in compact full-field solutions. These expressions are used to construct analytical solutions that satisfy the mixed boundary value problem and auxiliary conditions of rolling contact. For the hexagonal material zinc, calculations are made for contact zone width and temperature increases near onset of zone yield. Mathematics Subject Classifications (2000) 73B30, 73C25, 73C30, 73C35.  相似文献   

14.
We consider the problem of a long thin weightless rod constrained to lie on a cylinder while being held by end tension and twisting moment. Applications of this problem are found, for instance, in the buckling of drill strings inside a cylindrical hole. In a previous paper the general geometrically exact formulation was given and the case of a rod of isotropic cross-section analysed in detail. It was shown that in that case the static equilibrium equations are completely integrable and can be reduced to those of a one-degree-of-freedom oscillator whose non-trivial fixed points correspond to helical solutions of the rod. A critical load was found where the rod coils up into a helix.Here the anisotropic case is studied. It is shown that the equations are no longer integrable and give rise to spatial chaos with infinitely many multi-loop localised solutions. Helices become slightly modulated. We study the bifurcations of the simplest single-loop solution and a representative multi-loop as the aspect ratio of the rod's cross-section is varied. It is shown how the anisotropy unfolds the `coiling bifurcation'. The resulting post-buckling behaviour is of the softening–hardening–softening type typically seen in the cellular buckling of long structures, and can be interpreted in terms of a so-called Maxwell effective failure load.  相似文献   

15.
We develop procedures of numerical solution of nanostructure contact problems, which are based on the time discretization of nonlinear equations of molecular mechanics. The matrices and vectors of these equations are determined by using the Morse law of covalent atomic interaction, the fictitious rod elements to take account of angular variations between neighboring atomic covalent bonds, and noncovalent Van der Waals forces to take account of contact interactions between the graphene-like nanostructures. The procedures developed were included into the computational package PIONER, which was used to solve the problem of contact/self-contact of two nanotubes under conditions of dynamic equilibrium. We showed that the type of contact interaction significantly depends on the impact velocity of nanotubes. For a relatively small impact velocity, the nanotubes “adhere” to each other with a small deformation of their walls, due to the action of the Van der Waals attractive forces. As the impact velocity increases, the nanotubes fly apart because of the action of noncovalent repulsive forces. As the impact velocity continues to increase, there is a strong deformation of nanotubes with instantaneous “adhesion” of opposite ends and further separation of tubes. We show that taking account of the noncovalent forces of interaction between the opposite parts of the nanotube walls prevents their self-intersection; in this region of the nanotube contact, ovalization of their transverse cross-sections occurs.  相似文献   

16.
采用非光滑多体系统动力学的方法研究浮放物体与基础平台组成的多体系统,建立其非光滑接触的动力学方程与数值算法.浮放物体由主体部分和支撑腿组成,其间通过含黏弹性阻力偶的转动铰连接.支撑腿与基础平台间的接触力简化为接触点的法向接触力和摩擦力,采用扩展的赫兹接触力模型描述接触点的法向接触力,采用库伦干摩擦模型描述其摩擦力.采用笛卡尔坐标系下的位形坐标作为系统的广义坐标.首先,将基础平台运动看作非定常约束,用第一类拉格朗日方程建立系统的动力学方程,并采用鲍姆加藤约束稳定化的方法解决违约问题.随后给出基于事件驱动法和线性互补方法的数值算法.当相对切向速度为零时,构造静滑动摩擦力的正负余量和正、负向加速度的互补关系,从而将接触点黏滞——滑移切换的判断以及静滑动摩擦力的计算转化为线性互补问题进行求解,并采用Lemke算法求解线性互补问题.最后,通过数值仿真选择合适的步长;通过仿真结果说明浮放物体运动中存在的黏滞-滑移切换现象以及基础平台运动、质心位置对浮放物体运动的影响.  相似文献   

17.
本文利用有限元仿真给出了一种修正方法,并用数值仿真和试验验证了该方法的可靠性。研究表明:散体材料SHPB被动围压试验中,试样厚度远小于厚壁圆筒长度时,端部效应会导致厚壁圆筒不均匀凸出变形,计算材料的体应力-应变关系不能将厚壁圆筒应力状态简化为平面应力问题;厚壁圆筒处于弹性状态下,通过厚壁圆筒理论计算出的径向力与真实径向力存在一定比例关系,在一定范围内,折算系数与试样实时厚度呈二次函数关系。  相似文献   

18.
刘璐  龙雪  季顺迎 《力学学报》2015,47(6):1046-1057
对于具有复杂几何形态的多面体单元,线性接触模型不能准确地计算不同接触模式下的作用力,且接触变形和作用力方向也不易判断.基于闵可夫斯基和(Minkowski sum)方法的扩展多面体单元能够准确描述非规则颗粒单元的几何形态,并可精确计算单元间的接触碰撞作用.该方法具有接触判断简单、计算效率高的特点.它将基本多面体和扩展球体相叠加以形成具有光滑棱边和角点的扩展多面体单元.考虑扩展多面体单元相互作用过程中角点、棱边和平面之间的不同接触模式,发展了相应的非线性黏弹性接触模型. 该接触模型将不同接触模型下的法向刚度统一表述为单元接触中接触点处等效曲率半径的函数;黏滞力和切向弹性力接触模型则借鉴球体单元非线性接触模型的处理方法. 为检验扩展多面体的可靠性,对碎冰区冰块对圆桩结构的冰载荷进行了离散元分析. 采用沃洛诺伊(Voronoi)切割算法获得了碎冰的初始随机分布状态,并考虑了海冰在运动过程中的海水浮力和拖曳力.计算表明该扩展多面体单元可描述海冰在海流拖曳下的运动过程以及圆桩结构的动冰力特性.在此基础上进一步分析了冰速和冰块尺寸对圆桩冰力的影响,并确定了冰力在圆桩上的分布规律. 最后,讨论了目前扩展多面体单元在计算冰载荷方面的局限性和改进方法.   相似文献   

19.
Almost frictionless skating on ice relies on a thin layer of melted water insulating mechanically the blade of the skate from ice. Using the basic equations of fluid mechanics and Stefan law, we derive a set of two coupled equations for the thickness of the film and the length of contact, a length scale which cannot be taken as its value at rest. The analytical study of these equations allows to define a small a-dimensional parameter depending on the longitudinal coordinate which can be neglected everywhere except close to the contact points at the front and the end of the blade, where a boundary layer solution is given. This solution provides without any calculation the order of magnitude of the film thickness, and its dependence with respect to external parameters like the velocity and mass of the skater and the radius of profile and bite angle of the blade, in good agreement with the numerical study. Moreover this solution also shows that a lubricating water layer of macroscopic thickness always exists for standard values of ice skating data, contrary to what happens in the case of cavitation of droplets due to thermal heating (Leidenfrost effect).  相似文献   

20.
A method is presented for solving boundary-value elastic problems on the basis of the variational–structural method of R-functions and Reissner's mixed variational principle. A mathematical formulation is given to problems on the deformation of elastic bodies under mixed boundary conditions and bodies interacting with smooth rigid dies. Solutions satisfying all the boundary conditions are proposed. For undetermined components of these solutions, the resolving equations are derived and their properties are studied. A posteriori estimation of numerical solutions is made. As examples, solutions are found to a problem on the stress–strain state of a short cylinder and to a contact problem on a cylinder interacting with a smooth die. A numerical method of solving such problems is analyzed for convergence, and the accuracy of the solutions is estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号