首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Linear absorption spectra, resonance Raman spectra and excitation profiles, and two-photon-resonant hyper-Rayleigh and hyper-Raman scattering hyperpolarizability profiles are reported for the push-pull chromophore N,N-dipropyl-p-nitroaniline in seven solvents spanning a wide range of polarities. The absorption spectral maximum red shifts by about 2700 cm(-1), and the symmetric -NO2 stretch shifts to lower frequencies by about 11 cm(-1) from hexane to acetonitrile, indicative of significant solvent effects on both the ground and excited electronic states. The intensity patterns in the resonance Raman and hyper-Raman spectra are similar and show only a small solvent dependence except in acetonitrile, where both the Raman and hyper-Raman intensities are considerably reduced. Quantitative modeling of all four spectroscopic observables in all seven solvents reveals that the origin of this effect is an increased solvent-induced homogeneous broadening in acetonitrile. The linear absorption oscillator strength is nearly solvent-independent, and the peak resonant hyperpolarizability, beta(-2omega;omega,omega), varies by only about 15% across the wide range of solvents examined. These results suggest that the resonant two-photon absorption cross sections in this chromophore should exhibit only a weak solvent dependence.  相似文献   

2.
Solvent effects on the two-photon absorption of a symmetrical diamino substituted distyrylbenzene chromophore have been studied using the density functional response theory in combination with the polarizable continuum model. It is shown that the dielectric medium has a rather small effect both on the bond length alternation and on the one-photon absorption spectrum, but it affects significantly the two-photon absorption cross section. It is found that both one- and two-photon absorptions are extremely sensitive to the planarity of the molecule, and the absorption intensity can be dramatically reduced by the conformation distortion. It has led to the conclusion that the experimentally observed anomalous solvent effect on the two-photon absorption of dialkylamino substituted distyrylbenzene chromophores cannot be attributed to the intrinsic properties of a single molecule and its interaction with solvents.  相似文献   

3.
构建了一个衍生于双氰基二苯代乙烯的具有推-拉电子结构的环境敏感探针(SP), 该探针可作为将溶剂生色与分子转子特性结合起来的一个典型范例. SP探针的最大发射波长随溶剂极性的增加而显著增大, 归根于激发态分子转化为一个或多个扭转分子内电荷迁移(TICT)态, 极性溶剂更有利于电荷分离态分子的稳定. 在TICT态, 分子的荧光量子产率强烈地依赖于溶剂的极性、 黏度与温度. SP探针显示了很宽的溶剂生色范围, 在环己烷和二甲亚砜中的最大发射波长(λem)分别为445和641 nm, 相差196 nm, 能用于溶剂极性、 溶剂种类、 黏度与温度的检测识别. SP探针在环己烷和N,N-二甲基甲酰胺中的双光子吸收截面分别为5560和130 GM, 远高于同类双光子荧光探针; 其超大的斯托克斯位移(232 nm)可显著降低吸收谱对荧光的干扰, 显示出优良的检测成像性能, 可用于细胞黏度实时动态显微成像.  相似文献   

4.
Absorption and resonance Raman spectra have been measured over a wide range of solvents for two merocyanine dyes containing the indoline ("Fischer" base) electron donor group with different accepting groups. One appears to be near the cyanine limit (equal contributions of the neutral and zwitterionic resonance forms to both ground- and excited-state structures) based on electrooptic absorption data showing a very small dipole moment change upon electronic excitation. The resonance Raman spectra of both molecules show significant frequency shifts and intensity redistributions that evolve monotonically with increasing solvent polarity and are consistent with increasing zwitterionic character of the ground-state structure. The vibrational reorganization energies of both molecules, obtained by simulating the absorption band shapes, are smaller in polar solvents than in nonpolar or weakly polar ones, consistent with a more cyanine-like structure at higher solvent polarities. However, the vibrational reorganization energies of both molecules exceed 700 cm(-1) in all solvents, larger than in many true cyanine dyes, and the optical absorption maxima do not correlate well with either solvent polarity or vibrational reorganization energy. This indicates some limitations to the structural conclusions that can be reached from the two-state model for pi-conjugated donor-acceptor systems.  相似文献   

5.
The dimethylamino nitro stilbene (DANS) molecule is studied for exploring solvent effects on two-photon absorption using the quantum mechanical/molecular mechanical (QM/MM) response theory approach, where the quantum part is represented by density functional theory. We have explored the role of geometrical change of the chromophore in solution, the importance of taking a dynamical average over the sampled structures and the role of a granular representation of the polarization and electrostatic interactions with the classically described medium. The line shape function was simulated by the QM/MM technique thereby allowing for non-empirical prediction of the absolute two-photon cross section. We report a maximum in the TPA cross section for a medium of intermediate solvent polarity (i.e. in chloroform) and provide the grounds for an explanation of this effect which recently has been experimentally observed for a series of charge transfer species in solvents of different polarity. The calculations of absorption energies reproduce well the positive solvatochromic behavior of DANS and are in good agreement with experimental spectra available for the chloroform and DMSO solvents. In line with recent development of the QM/MM response technique for color modeling, we find this methodology to offer a versatile tool to predict and analyze two-photon absorption phenomena taking place within a medium.  相似文献   

6.
Abstract

Solvents vary in their behavior in high performance liquid chromatography (HPLC). Water and methanol, among others, are widely used in the mobile phase as well as solvents for the solute. Few reports indicate that the solvent used for the solute can behave as an analyte. Normally, it is generally accepted that the solute solvent, a non-constituent of the mobile phase will be the first eluent. However, a solvent which is a component of the sample can show up as an unexpected peak with its own identity. This solvent may show a similar retention time as some of the unknown components of the sample. This indicates that in some cases the quantitative results may be the sum of the absorptivity of the solute and solvent used for the sample. It is assumed that some solvents show no absorption in the ultraviolet region at which the analysis is being conducted. Depending on the mobile phase composition some solvents can be detected at the wavelengts or wavelengths used for analysis. Water, ethylacetate, and methanol showed absorption at 210 nm when present in the sample being analyzed with a mobile phase of acetonitrile-methanol using a C18 column. These solvents overlapped or showed retention times the same as estriol and testosterone.  相似文献   

7.
Steady-state absorption and fluorescence spectra, and time-resolved fluorescence spectra of coumarin 343 (C343) were measured in different solvents. The effect of the solvent on the spectral properties and dipole moment of the lowest excited state of C343 were investigated. It was found that the absorption and fluorescence spectra red-shifted slightly and strongly with increasing solvent polarity, respectively, because the charge distribution of the excited state leaded to the increasing difference between the absorption and fluorescence spectra with increasing solvent polarity. The dipole moment of the lowest excited state of C343was determined from solvatochromic measurements and the quantum chemical calculation, and the results obtained from these two methods were fully consistent. Investigations of the time-resolved fluorescence of C343 in different solvents indicated that the fluorescence lifetimes increased nearly linearly with increasing solvent polarity from 3.09 ns in toluene to 4.45 ns in water. This can be ascribed to the intermolecular hydrogen bonding interactions between C343 and hydrogen donating solvents.  相似文献   

8.
Singlet molecular oxygen, O2(a1Deltag), can be produced upon resonant two-photon excitation of a photosensitizer. In the present study, two molecules that have received recent attention in studies of nonlinear organic materials were characterized for use as standard two-photon sensitizers: 2,5-dicyano-1,4-bis(2-(4-diphenylaminophenyl)vinyl)-benzene, CNPhVB, and 2,5-dibromo-1,4-bis(2-(4-diphenylaminophenyl)vinyl)-benzene, BrPhVB. Absolute two-photon absorption cross sections, delta, were independently determined for these molecules using two techniques that have heretofore not been applied to this problem: an optical technique (time-resolved detection of O2(a1Deltag) phosphorescence) and a nonoptical technique (a time-resolved laser-induced optoacoustic experiment). For experiments performed in toluene, a solvent commonly used for such nonlinear optical studies, appreciable absorption by the solvent itself complicates the measurements. In cyclohexane, however, delta values could be obtained without the interfering effects of solvent absorption. On the basis of these results, we discuss key aspects of the respective techniques used to quantify values of delta. The information reported herein provides some explanation for the lack of consensus that is routinely observed in published values of delta, certainly for experiments performed in aromatic solvents such as toluene and benzene.  相似文献   

9.
Two europium complexes with bis(bipyridine) azamacrocyclic ligands featuring pendant arms with or without π-conjugated donor groups are synthesized and fully characterized by theoretical calculations and NMR spectroscopy. Their photophysical properties, including two-photon absorption, are investigated in water and in various organic solvents. The nonfunctionalized ligand gives highly water-stable europium complexes featuring bright luminescence properties but poor two-photon absorption cross sections. On the other hand, the europium complex with an extended conjugated antenna ligand presents a two-photon absorption cross section of 45 GM at 720 nm but is poorly luminescent in water. A detailed solvent-dependent photophysical study indicates that this luminescence quenching is not due to the direct coordination of O-H vibrators to the metal center but to the increase of nonradiative processes in a protic solvent induced by an internal isomerization equilibrium.  相似文献   

10.
The excited-state dynamics of covalently linked electron donor-acceptor systems consisting of N, N-dimethylaniline (DMA) as electron donor and either perylene (Pe) or cyanoperylene (CNPe) as acceptor has been investigated in a large variety of solvents, including a room-temperature ionic liquid, by using femtosecond time-resolved fluorescence and absorption spectroscopy. The negligibly small solvent dependence of the absorption spectrum of both compounds and the strong solvatochromism of the fluorescence are interpreted by a model where optical excitation results in the population of a locally excited state (LES) and emission takes place from a charge-separated state (CSS). This interpretation is supported by the fluorescence up-conversion and the transient absorption measurements that reveal substantial spectral dynamics in polar solvents only, occurring on time scales going from a few hundreds of femtoseconds in acetonitrile to several tens of picoseconds in the ionic liquid. The early transient absorption spectra are similar to those found in nonpolar solvents and are ascribed to the LES absorption. The late spectra due to CSS absorption show bands that are red-shifted relative to those of the radical anion of the acceptor moiety by an amount that depends on solvent polarity, pointing to partial charge separation. Global analysis of the time-resolved data indicates that the charge separation dynamics in PeDMA is essentially solvent controlled, whereas that in CNPeDMA is faster than diffusive solvation, this difference being accounted for by a larger driving force for charge separation in the latter. On the other hand, the CSS lifetime of PeDMA is of the order of a few nanoseconds independently of the solvent, whereas that of CNPeDMA decreases with increasing solvent polarity from a few nanoseconds to a few hundreds of picoseconds. Comparison of these results with previously published data on the fluorescence quenching of Pe and CNPe in pure DMA shows that the charge separation and the ensuing charge recombination occur on similar time scales independently of whether these processes are intra- or intermolecular.  相似文献   

11.
The new 3-hydroxychromone derivative 2-(6-diethylaminobenzo[b]furan-2-yl)-3-hydroxychromone (FA) displays a dramatic solvent-dependent transformation of fluorescence spectra in the range of low-polarity solvents. The two well-separated emission bands change their relative intensities so that the short-wavelength band being of a very low intensity in hexane becomes dominant in the more polar ethyl acetate and trichloromethane. We suggest the participation in this effect of excited-state intramolecular proton transfer, which is characteristic for other 3-hydroxychromone and 3-hydroxyflavone derivatives, in the range of solvents of much higher polarities. Because of these unique properties, a number of spectroscopic parameters (positions of absorption and two fluorescence maxima, the ratio of their intensities and the fluorescence quantum yield) can be measured in this solvent range with multiparametric analysis of the data. In terms of solvent polarity, the shifts in both emission bands and their intensity ratio demonstrate a good correlation with empirical polarity scales ETN, Py and SPP, while the absorption spectra reveal some deviations for the tested oxygen-containing solvent molecules. A good cross-correlation is observed between fluorescence spectral shifts and the ratio of band intensities. The latter provides the means for a dramatic amplification of solvent response. Thus, a new approach for ultrasensitive scaling and probing the solvent polarity in the low-polararity range can be suggested. It involves very simple ratiometric measurements at two emission bands and can be posed for a variety of applications. We present examples of these applications for distinguishing of polarities between methylated benzene derivatives, for quantitative assay of polar impurities in low-polar solvents and for detection of the changes of solvent polarity as a function of temperature.  相似文献   

12.
Developing organic chromophores with large two‐photon absorption (TPA) in both organic solvents and aqueous media is crucial owing to their applications in solid‐state photonic devices and biological imaging. Herein, a series of novel terpyridine‐based quadrupolar derivatives have been synthesized. The influences of electron‐donating group, type of conjugated bridge, as well as solvent polarity on the molecular TPA properties have been investigated in detail. In contrast to the case in organic solvents, bis(thienyl)‐benzothiadiazole as a rigid conjugated bridge will completely quench molecular two‐photon emission in aqueous media. However, the combination of alkylcarbazole as the donor and bis(styryl)benzene as a conjugation bridge can enlarge molecular TPA cross‐sections in both organic solvent and aqueous media. The reasonable two‐photon emission brightness for the organic nanoparticles of chromophores 3 – 5 in the aqueous media, prepared by the reprecipitation method, enables them to be used as probes for in vivo biological imaging.  相似文献   

13.
The excited-state double proton transfer (ESDPT) properties of 1, 5-dihydroxyanthraquinone (1, 5-DHAQ) in various solvents were investigated using femtosecond transient absorption spectroscopy and the DFT/TDDFT method. The steady-state fluorescence spectra in toluene, tetrahydrofuran (THF) and acetonitrile (ACN) solvents presented that the solvent polarity has an effect on the position of the ESDPT fluorescence emission peak for the 1, 5-DHAQ system. Transient absorption spectra show that the increasing polarity of the solvent accelerates the rate of excited state dynamics. Calculated potential energy curves analysis further verified the experimental results. The ESDPT barrier decreases gradually with the increase of solvent polarity from toluene, THF to ACN solvent. It is convinced that the increase of solvent polarity can promote the occurrence of the ESDPT dynamic processes for the 1, 5-DHAQ system. This work clarifies the mechanism of the influence of solvent polarity on the ESDPT process of 1, 5-DHAQ, which provides novel ideas for design and synthesis of new hydroxyanthraquinone derivatives.  相似文献   

14.
Yuan J  Liao L  Lin Y  Deng C  He B 《Analytica chimica acta》2008,607(2):160-167
It was discovered that a second order spectra data matrix of Sudan I produced from the solvent components gradual change-visible absorption spectra can be expressed as the combination of two bilinear data matrices. Based on this discovery, a new method for the determination of Sudan I in gray systems using second order calibration algorithms has been developed. The second order calibration algorithms were based on the popular parallel factor analysis (PARAFAC) and rank annihilation factor analysis (RAFA), respectively. In the method described here, the components of the solvent were changed gradually by adding ethanol into cyclohexane, the absorption spectra of Sudan I and chilli samples in a series of cyclohexane-ethanol mixed solvents with various ethanol volume fractions were recorded, and then the second order data were obtained from the solvent components gradual change-visible absorption spectra. Thus, the concentration of Sudan I in a gray system could be determined from the spectra matrices using second order calibration algorithms. This method is simple, convenient and dependable. The method has been used to determine Sudan I in chilli powder with satisfactory results.  相似文献   

15.
合成25个4,4'-二取代二苯乙烯化合物,测定了这些化合物在环己烷、乙醚、三氯甲烷、乙腈和醇等10多种溶剂中紫外吸收光谱的最大波长,共得到242个实验数据.讨论了取代基效应和溶剂效应对其紫外吸收光谱最大波长能量的影响.研究结果表明:同种溶剂中4,4′-二取代二苯乙烯化合物紫外吸收最大波长的能量主要受其分子内部结构(取代基效应)的影响,即由取代基的激发态参数σCexC和基态的极性参数σp共同决定;不同溶剂中其紫外吸收最大波长的能量由取代基效应和溶剂效应共同决定.提出了定量估算4,4′-二取代二苯乙烯化合物紫外吸收能量方程.并且发现,以溶剂在水/正辛醇中分配系数logP比用溶剂显色参数ET(30)度量溶剂效应更加有效,所得的定量方程相关性更好,物理意义更为明确.用所得方程对文献报道的有关化合物的紫外吸收光谱进行了预测,结果与实验测定值相吻合.  相似文献   

16.
The sorbent-solvent interactions for amylose tris(3, 5-dimethylphenylcarbamate) (ADMPC) with five commonly used solvents, hexane, methanol, ethanol, 2-propanol (IPA), and acetonitrile (ACN), are studied using attenuated total reflection infrared spectroscopy (ATR-IR) of thin sorbent films, X-ray diffraction (XRD) of thin films, (13)C cross polarization/magic angle spinning (CP/MAS) and MAS solid state NMR of polymer-coated silica beads (commercially termed "Chiralpak AD"), and DFT modeling. The ADMPC-polymer-coated silica beads are used commercially for analytical and preparative scale separations of chiral enantiomers. The polymer forms helical rods with intra- and inter-rod hydrogen bonds (H-bonds). There are various nm-sized cavities formed between the polymer side-chains and rods. The changes in the H-bonding states of the C=O and NH groups of the polymer upon absorption of each of the five solvents at 25 degrees C are determined with ATR-IR. The IR wavenumbers, the H-bonding interaction energies, and the H-bonding distances of the polymer side-chains with each of the solvent molecules are predicted using the DFT/B3LYP/6-311+g(d,p) level of theory. The changes in the polymer crystallinity upon absorption of each solvent are characterized with XRD. The changes in the polymer crystallinity and the H-bonding states of C=O groups are also probed with (13)C CP/MAS solid-state NMR. The changes in the polymer side-chain mobility are detected using (13)C MAS solid-state NMR. The H-bonding states of the polymer change upon absorption of each polar solvent and usually result in an increase in the polymer crystallinity and the side-chain mobility. The polymer rods are reorganized upon solvent absorption, and the distance between the rods increases with the increase in the solvent molecular size. These results have implications for understanding the role of the solvent in modifying the structure and behavior of the polymer sorbents.  相似文献   

17.
This paper investigates how solution conditions, especially solvent polarity and hydrogen bonding, affect the fluorescence of ellipticine, a natural plant alkaloid with anticancer activity. A total of 16 solvents that cover a wide range of polarities were tested. The ultraviolet (UV) absorption and fluorescence emission of ellipticine were found to be solvent dependent. The absorption and emission maximum shifted to higher wavelengths (red shift) with increased solvent polarity. The difference in absorption and emission maximum (Stokes' shift) was large, approximately 10,000-11,000 cm-1, in polar solvents (with orientation polarizability Deltaf>0.2) but unusually small, approximately 8900 cm-1, in nonpolar solvents (hexane and cyclohexane). Large Stokes' shifts were due to an intramolecular charge transfer (ICT), which was enabled by large solvent polarity and hydrogen bonding of ellipticine with the solvents. Two transitions were found in the Lippert-Mataga plot between (1) nonpolar and semipolar solvents and between (2) semipolar and polar solvents. The first transition reflected the formation of hydrogen bonds between ellipticine and the solvents whereas the second transition indicated that ellipticine underwent an ICT. In addition, the larger extinction coefficients and the longer lifetime of ellipticine obtained in protic solvents were attributed to the formation of stronger hydrogen bonds. The photophysical response of ellipticine to changes in solvent polarity and hydrogen bond formation could be used to infer the location of ellipticine in a heterogeneous medium, namely liposomes in aqueous solution. A relatively large red shift of emission in liposomes indicated that ellipticine may be in a more polar environment with respect to the lipid bilayer, possibly close to the hydrophilic interface.  相似文献   

18.
The solvent effects on the electronic absorption spectra of 9,10-anthraquinone (AQ) and its symmetric dihydroxy derivatives namely 1,5-dihydroxyanthraquinone (1,5-DHAQ) and 2,6-dihydroxyanthraquinone (2,6-DHAQ) have been studied in pure solvents and some binary solvent mixtures. The frequencies of the absorption for AQ and 2,6-DHAQ are quite solvent sensitive while those for 1,5-DHAQ are not. Due to the intramolecular hydrogen bond between the CO and OH groups, no influence of solvent hydrogen bond acceptors is observed in 1,5-DHAQ. This hydrogen bond gives a stable six member cycle which is not broken even by the strongest hydrogen bond acceptor solvents used in this work, such as DMSO and DMF. The Taft and Kamlet's solvatochromic comparison method was applied for AQ and 2,6-DHAQ. Aromatic solvents and aliphatic amines were not included in the correlations since they strongly deviate suggesting another type of interactions. All the π→π* bands of AQ and 2,6-DHAQ show strong influence of π* despite the fact that their dipole moment is zero. Although it would be reasonable to expect that in the absence of a solute dipole moment there is not significant orientation of solvent molecules around the solute molecules, in this case dipolar interactions between solute and solvent due to local effects might be expected. AQ may be considered as formed by two carbonyl groups weakly interacting with the benzene rings; that means that the carbonyl group can behave as an isolated dipole and independently of the other. To detect possible specific interactions between the AQ and aliphatic amines and aromatic hydrocarbons, preferential solvation in mixed solvent was investigated. It is concluded that EDA interactions are important in the solvation of AQ with these compounds as solvents.  相似文献   

19.
The electronic absorption and fluorescence spectra of carbazole and 9-phenylcarbazole have been studied in different solvents. Comparison of the spectroscopic data shows that the effect of the interaction of phenyl-substituted carbazole with the solvent is the same as that of the carbazole completed by hydrogen bonding.  相似文献   

20.
The molar transition energy (E(T)) polarity values for the dye 4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide were collected in binary mixtures comprising a hydrogen-bond accepting (HBA) solvent (acetone, acetonitrile, dimethyl sulfoxide (DMSO), and N,N-dimethylformamide (DMF)) and a hydrogen-bond donating (HBD) solvent (water, methanol, ethanol, propan-2-ol, and butan-1-ol). Data referring to mixtures of water with alcohols were also analyzed. These data were used in the study of the preferential solvation of the probe, in terms of both solute-solvent and solvent-solvent interactions. These latter interactions are of importance in explaining the synergistic behavior observed for many mixed solvent systems. All data were successfully fitted to a model based on solvent-exchange equilibria. The E(T) values of the dye dissolved in the solvents show that the position of the solvatochromic absorption band of the dye is dependent on the medium polarity. The solvation of the dye in HBA solvents occurs with a very important contribution from ion-dipole interactions. In HBD solvents, the hydrogen bonding between the dimethylamino group in the dye and the OH group in the solvent plays an important role in the solvation of the dye. The interaction of the hydroxylic solvent with the other component in the mixture can lead to the formation of hydrogen-bonded complexes, which solvate the dye using a lower polar moiety, i.e. alkyl groups in the solvents. The dye has a hydrophobic nature and a dimethylamino group with a minor capability for hydrogen bonding with the medium in comparison with the phenolate group present in Reichardt's pyridiniophenolate. Thus, the probe is able to detect solvent-solvent interactions, which are implicit to the observed synergistic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号