首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new symmetric bidentate Schiff base N,N′-bis [(E)-3-(2-nitrophenyl)allylidene)]benzene-1,2-diamine (L) and its complexes with general formula ZnLX2 (X = chloride, bromide, iodide, thiocyanate and azide) are described. The authenticity of the ligand and complexes have been established by microanalysis, electronic, MS, FT-IR, 1H and 13C NMR spectra, and by molar conductivity measurements. All compounds are non-electrolytes in DMF. The analytical data confirmed that the metal to ligand ratio in the complexes is 1 : 1. The complexes have pseudotetrahedral geometry with C2V point group.  相似文献   

2.
Two hexanuclear zinc(II) complexes, [Zn6(L1)22-OH)22-CH3COO)8] · CH3CN (1 · CH3CN) and [Zn6(L2)22-OH)22-CH3COO)8] · 4CH3CN (2 · 4CH3CN), where HL1 = 4-methyl-2,6-bis(cyclohexylmethyliminomethyl)-phenol and HL2 = 4-methyl-2,6-bis(1-naphthalylmethyliminomethyl)-phenol, have been synthesized and characterized by elemental analysis, FT-IR and fluorescence spectroscopic methods, and by X-ray diffraction analysis. In the asymmetric unit of complex 1, two of the three zinc atoms have pentacoordinate geometries and the other is tetrahedrally coordinated, whereas the three distinct Zn atoms in complex 2 adopt three different coordination environments, namely distorted octahedral, trigonal bipyramidal and tetrahedral. The fluorescence properties of the ligands and complexes have been investigated.  相似文献   

3.
We report here experimental evidence for the formation in the solid state of a new binuclear Fe (III) 2(mu-OMe) 2(HL) 4 complex (H 2L is 2-salicyloylhydrazono-1,3-dithiolane). The isostructural Mn (III) 2(mu-OMe) 2(HL) 4 complex has provided the strongest ferromagnetic interaction value (J approximately 20 cm (-1)) between Mn (III) ions to date. The new iron binuclear compound presented in this study shows antiferromagnetic intramolecular coupling, which agrees with the theoretical study that we previously proposed. During our synthetic work, we also observed an unexpected spontaneous reduction of the new Fe (III)(HL) 2Cl,S complex to the new Fe (II)(H 2L) 2Cl 2 high-spin mononuclear complex. This process has been checked by cyclo-voltammetry as well as pseudosteady voltammetry.  相似文献   

4.
The reaction of dichlorostannanes R2SnCl2 (R=Me 1, Bun 2) with piperazine ligand in molar ratio 1:2, in dry methylene dichloride, in an inert atmosphere leads to the synthesis of R2Sn(C4H9N2)2(R=Me 1, Bun 2). In a similar manner, The reaction between Ph2SnCl2 and piperazine in dry ethanol in molar ratio 1:1 produces [Ph2Sn(C4H8N2)]2 (3). The yields of these new products were excellent and they have been fully characterized by FT-IR, UV–Vis, multinuclear (1H, 13C, 119Sn) NMR spectroscopy and mass spectrometry, as well as elemental analysis. The spectroscopic results indicate that the piperazine ligand is coordinated to tin atom of organotin moieties, through the nitrogen atoms. Furthermore, the ligand behaves as a bidentate fashion in (1) and (2) and gives 1:2 substitution products, while in the complex (3) the two six-membered rings bind in bidentate-chelate forms between the two Sn atoms.  相似文献   

5.
A new category of dinucleating macrocyclic Schiff base ligands with ring sizes from 34- to 52-membered have been synthesised employing metal template procedures involving the reaction of o-phenylenediamine with a series of α,ω-bis(3′-hydroxy-4′-formylphenyloxy)alkanes in the presence of calcium(II), barium(II) or manganese(II). The latter cations act as ‘transient’ templates for formation of the corresponding metal-free Schiff base macrocyclic ligands, H4Ln (where n signifies the number of carbons in each linking bis-alkoxy chain); the macrocycles corresponding to n = 4, 6 and 8 were isolated and characterised while, for n = 1, in which single methylene groups acts as the bridges between salicyl moieties, the cyclic product was used directly for preparation of its dinuclear complex, [Zn2L1], without prior isolation. Evidence for the templating role of barium in the preparation of H4L6 and H4L8 was obtained by isolation of the corresponding species of type H4Ln·2Ba(ClO4)2 (n = 6 or 8) as ‘intermediates’ before generation of the respective metal-free macrocycles. Reaction of zinc(II) acetate with the free macrocycles in methanol yielded complexes of type [Zn2Ln] in all cases. A related non-cyclic ligand, H2L0 and its corresponding mononuclear complex, [ZnL0]·H2O, were also synthesised and its spectral properties compared with those of the macrocyclic derivatives. The elemental analyses, 1H NMR, IR, UV–Vis and MS spectra of the respective zinc complexes in each case were in accord with the formation of the expected 2:2 condensation product. The results of DFT calculations to probe aspects of the electronic and structural natures of both H2L1 and H4L4 are briefly presented.  相似文献   

6.
The synthesis and magnetic behavior of four new dinuclear iron(II) complexes Fe22a‐d × 4Py with the iron in an octahedral coordination sphere is presented in this paper. The complex c is a high‐spin complex over the whole temperature range investigated, while the complexes a,b , and d perform a partial low‐spin ⇔︁ high‐spin spin transition. In case of Fe22b × 4Py, X‐ray structure analysis of the HS/LS state was possible, showing that in one molecule both iron centers are either in the low‐spin or sin the high‐spin state. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:391–397, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20108  相似文献   

7.
Reaction between 3-formylsalicylic acid and bis-(2-aminophenyl)-disulphide yields a septadentate Schiff base with N2SO4 donor frame of which the inner compartment is N2SO2 and the outer is O2O2 type. It forms several complexes with inner copper centre and outer nontransition/transition metal ions. The complexes have been characterised by elemental analyses, spectral (IR, absorption, diffused reflectance), thermal and magnetic data. Dinuclear copper complexes exhibit subnormal magnetic moments (≈ 0.80 BM), showing magnetic exchange, and six-line solid-state ESR spectra at 77 K.  相似文献   

8.
The synthesis of a (carboxyamido)pyridinepyrazolate (H(5)bppap) dinucleating ligand is described. Bimetallic iron and cobalt complexes of H(5)bppap ([M(II)(2)H(2)bppap](+)) showed structural differences in both their primary and secondary coordination spheres. The binding of small molecules into the preorganized ligand cavity is verified by the hydration of [Fe(II)(2)H(2)bppap](+) and [Co(II)(2)H(2)bppap](+), leading to the formation of complexes [{Co(II)(OH)}Co(II)H(3)bppap](+) and [{Fe(II)(OH)}Fe(II)H(3)bppap](+), in which one of the metal centers has a terminal hydroxo ligand.  相似文献   

9.
He C  Lippard SJ 《Inorganic chemistry》2000,39(23):5225-5231
The synthesis of dicopper(I) complexes [Cu2(BBAN)(MeCN)2](OTf)2 (1), [Cu2(BBAN)(py)2](OTf)2 (2), [Cu2(BBAN)(1-Me-BzIm)2](OTf)2 (3), [Cu2(BBAN)(1-Me-Im)2](OTf)2 (4), and [Cu2(BBAN)(mu-O2CCPh3)](OTf) (5), where BBAN = 2,7-bis((dibenzylamino)methyl)-1,8-naphthyridine, py = pyridine, 1-Me-Im = 1-methylimidazole, and 1-Me-BzIm = 1-methylbenzimidazole, are described. Short copper-copper distances ranging from 2.6151(6) to 2.7325(5) A were observed in the solid-state structures of these complexes depending on the terminal ligands used. The cyclic voltammogram of compound 5 dissolved in THF exhibited a reversible redox wave at E1/2 = -25 mV vs Cp2Fe+/Cp2Fe. When complex 5 was treated with 1 equiv of silver(I) triflate, a mixed-valence dicopper(I,II) complex [Cu2(BBAN)(mu-O2CCPh3)(OTf)](OTf) (6) was prepared. A short copper-copper distance of 2.4493(14) A observed from the solid-state structure indicates the presence of a copper-copper interaction. Variable-temperature EPR studies showed that complex 6 has a fully delocalized electronic structure in frozen 2-methyltetrahydrofuran solution down to liquid helium temperature. The presence of anionic ligands seems to be an important factor to stabilize the mixed-valence dicopper(I,II) state. Compounds 1-4 with neutral nitrogen-donor terminal ligands cannot be oxidized to the mixed-valence analogues either chemically or electrochemically.  相似文献   

10.
4-Ethylthiosemicarbazide and its NH(1) derivatives have been prepared and confirmed by elemental analysis and 1H?NMR spectra to produce diverse complexes with Co(II), Ni(II) and Cu(II) ions. The obtained complexes have been investigated based on elemental and thermal analyses, spectral (UV/VIS, ESR, mass) studies and magnetic measurements. The IR data reveal the presence of variable modes of chelation for the investigated ligands. The electronic spectra of the complexes as well as their magnetic moments provide information about geometries. The ESR spectra give evidence for the proposed structure and the bonding for some Cu(II) complexes. Thermal decomposition of some complexes ended with metal or metal oxide as a final product.  相似文献   

11.
A new end-off type acyclic ligand with four hydroxyethyl arms, 2,6-bis[bis(2-hydroxyethyl)aminomethyl]-4-methylphenol [H(bhmp)], formed dinuclear cobalt(II) complexes [Co(2)(bhmp)(OAc)(2)]BPh(4) (1) and [Co(2)(bhmp)(OBz)(2)]BPh(4) (2). The complex 1.2.5CH(3)CN (C(50)H(62.5)BCo(2)N(4.5)O(9)) crystallizes in the monoclinic space group C2/c with dimensions a = 25.424(5) A, b = 13.376(2) A, c = 29.913(6) A, beta = 105.930(3) degrees, and V = 9781(3) A(3) and with Z = 8. X-ray diffraction analysis revealed a mu-phenoxo-bis(mu-acetato)dicobalt(II) core structure containing two octahedral cobalt(II) ions. Electronic spectra were investigated for 1 and 2 in the range 400-1800 nm, and the data were typical for the octahedral high-spin cobalt(II) complexes. Magnetic susceptibility was measured for 1 and 2 over the temperature range 4.5-300 K, and the data were analyzed well using our theoretical method. The best fitting parameters were kappa = 0.77, lambda = -116 cm(-1), Delta = 572 cm(-1), and J = -0.44 cm(-1) for complex 1 and kappa = 0.96, lambda = -93 cm(-1), Delta = 616 cm(-1), and J = -0.33 cm(-1) for complex 2.  相似文献   

12.
A new Schiff base ligand, 2-((E)-((4-(((E)-benzylidene)amino)phenyl)imino)methyl)-naphthalene-1-ol, was prepared by the reflux condensation of p-phenylenediamine with 2-hydroxy-1-naphthaldehyde and benzaldehyde. Metal complexes were prepared by reacting the ligand with metal salts: VCl3, CrCl3·6H2O, MnCl2·3H2O, FeCl3·6H2O, CoCl3·6H2O, NiCl2·6H2O, CuCl2·2H2O, and ZnCl2. The ligand and its metallic complexes were characterized by various techniques such as elemental analysis, AAS, NMR, IR, UV–Vis, TGA, DTA, XRD and TEM. The data confirmed that the ligand coordinated with the metal ions in a bidentate nature, bonding through its azomethine nitrogen atom and phenolic oxygen atom; this gave an octahedral geometry. The XRD patterns of the complexes indicated that they were of various structures: the Mn(II), Co(III), and Cu(II) complexes were triclinic, the ligand and Ni(II) complex were orthorhombic, the V(III) and Zn(II) complexes were hexagonal, the Cu(II) complex was monoclinic, and the Fe(II) complex was cubic. TEM analysis confirmed that the complexes were nanoscale in nature. The antibacterial and antifungal activities of the ligand and its complexes against Salmonella enterica serovar typhi and Candida albicans were investigated by the hole plate diffusion method. It was observed that the Co(II) and Zn(II) complexes had intermediate antibacterial activities, while the V(III) complex had the highest activity against C. albicans fungi. The in vitro anticancer activities of the ligand and its metal complexes were tested towards PC-3, SKOV3, and HeLa tumour cell lines, where they exhibited higher antitumour activities against these selected human cell lines than clinically used drugs such as cisplatin, estramustine, and etoposide.  相似文献   

13.
The reaction between 3-hydroxy-5-hydroxymethyl-2-methyl-4-pyridinecarboxaldehyde semicarbazone (pyridoxal-semicarbazone or PLSC) and appropriate chloride, sulfate, nitrate or thiocyanate Cu(II) salts in water/alcohol mixtures resulted in the formation of new copper(II) complexes: [Cu(PLSC)Cl2] (1), [Cu(PLSC)(H2O)(SO4)]2·3H2O (2), [Cu2(PLSC)2(NCS)2](NCS)2 (3), [Cu(PLSC)(NO3)2(CH3OH)] (4) and [Cu(PLSC-2H]NH3·H2O (5). The complexes were characterized by elemental analysis, conductometric measurements and IR spectroscopy, while complexes 1, 2, 3 and 4 were further characterized by single crystal X-ray diffraction.  相似文献   

14.
The monodentate cis-[Ru(phen)(2)(hist)(2)](2+)1R and the bidentate cis-[Ru(phen)(2)(hist)](2+)2A complexes were prepared and characterized using spectroscopic ((1)H, ((1)H-(1)H)COSY and ((1)H-(13)C)HSQC NMR, UV-vis, luminescence) techniques. The complexes presented absorption and emission in the visible region, as well as a tri-exponential emission decay. The complexes are soluble in aqueous and non-aqueous solution with solubility in a buffer solution of pH 7.4 of 1.14 × 10(-3) mol L(-1) for (1R + 2A) and 6.43 × 10(-4) mol L(-1) for 2A and lipophilicity measured in an aqueous-octanol solution of -1.14 and -0.96, respectively. Photolysis in the visible region in CH(3)CN converted the starting complexes into cis-[Ru(phen)(2)(CH(3)CN)(2)](2+). Histamine photorelease was also observed in pure water and in the presence of BSA (1.0 × 10(-6) mol L(-1)). The bidentate coordination of the histamine to the ruthenium center in relation to the monodentate coordination increased the photosubstitution quantum yield by a factor of 3. Pharmacological studies showed that the complexes present a moderate inhibition of AChE with an IC(50) of 21 μmol L(-1) (referred to risvagtini, IC(50) 181 μmol L(-1) and galantamine IC(50) 0.006 μmol L(-1)) with no appreciable cytotoxicity toward to the HeLa cells (50% cell viability at 925 μmol L(-1)). Cell uptake of the complexes into HeLa cells was detected by fluorescence confocal microscopy. Overall, the observation of a luminescent complex that penetrates the cell wall and has low cytotoxicity, but is reactive photochemically, releasing histamine when irradiated with visible light, are interesting features for application of these complexes as phototherapeutic agents.  相似文献   

15.
Group 4 metal complexes [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole, M = Ti; R = pyridine, thiazole; M = Zr) containing the tetramethylcyclopentadienyl-dialkylsilyl bridged amidinato as pendant ligand, were synthesized and characterized by elemental analysis, solution (1)H, (13)C and (15)N NMR spectroscopy and experimental (13)C and (15)N CPMAS in the solid state. The crystal structures of [Ti(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole) were determined by single crystal X-ray diffraction studies. All compounds exhibit a distorted tetrahedral geometry, with the ansa-monocyclopentadienyl-amido ligands acting in a bidentate mode. The [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, thiazole; M = Zr, Ti) complexes are ethylene polymerization catalysts in the presence of MAO and they are active precursors in regioselective catalytic hydroamination operating with an anti-Markovnikov mechanism.  相似文献   

16.
17.
A series of novel polyiron species have been prepared from the reaction of iron chloride with the 2,5-disubstituted pyridines H2L(n) (H2L1) = N,N'-bis(n-butylcarbamoyl)pyridine-2,6-dicarboxamide; H2L2 = N,N'-bis(n-ethylcarbamoyl)pyridine-2,6-dicarboxamide). By small modifications of the experimental conditions under which the reactions are carried out, it has been possible to prepare the quadruply stranded diiron(II) complex [Fe2(mu-H2L1)4(mu-Cl)2][FeCl4]2 (1), the metallamacrocycle [Fe2(mu-H2L1)2(THF)4Cl2][FeCl4]2 (2), the hexairon(III) compound [Fe6(L1)2(mu-OMe)6(mu4-O)2Cl4] (3), and the mixed-valence trinuclear iron complexes [Fe3(L(n))3(mu3-O)] (n = 1, 4; n = 2, 5). The X-ray crystal structures of 3 and 5 and magnetic studies for all the compounds are herein presented. Interestingly, the structural analysis of 5 at room temperature indicates that one of the iron centers is Fe(III) while the other two have an average valence state between Fe(II) and Fe(III). The five complexes herein presented demonstrate the great versatility that the new ligand has as a building block for the formation of supramolecular coordination assemblies.  相似文献   

18.
The new ligand N-(2-acetyl-2-thiazoline)-N′-(2-thiazolidin-2-one) azine (ATHTd) has been synthesized and characterized by X-ray diffraction, elemental analysis, 1H and 13C NMR spectra, elemental analysis, IR and UV–Vis spectra. Also the complexes [NiCl(ATHTd)(H2O)2]Cl (1), [Ni(ATHTd)2](NO3)2·H2O (2), [CuCl2(ATHTd)] (3) and [ZnCl2(ATHTd)2] (4) have been isolated and characterized in the solid state by X-ray diffraction, elemental analysis, IR spectroscopy, UV–Vis–NIR diffuse reflectance, magnetic susceptibility measurements and, in the case of copper(II) complex, EPR spectroscopy. X-ray data indicate that the environment around nickel atoms in 1 and 2 may be described as a distorted octahedral geometry. In 1 the metal ion is coordinated to one chloride ligand, one water molecule and one ATHTd molecule which acts as a tridentate ligand, while in 2 Ni(II) is coordinated to two tridentate ATHTd molecules. With regard to 3, the coordination geometry around copper(II) ion can be considered a distorted square pyramid with the cation coordinated to one tridentate ATHTd ligand and two chloride ligands. Finally, in the case of 4, the Zn(II) is bonded to two ATHTd molecules that acts as a monodentate ligand and two chloride atoms in a distorted tetrahedral geometry. The structure of ATHTd in the complexes presents an amino-2-thiazoline form instead of the iminothiazolidine one observed in free ATHTd. Another significant structural change in complexes, except in 4, is due to the different degree of rotation of the thiazoline rings around the C(1)–C(4) and C(6)–N(3) bonds, which permit the coordination through thiazolinic nitrogen atoms.  相似文献   

19.
A hexanuclear gold(I) selenido cluster and its sulfido counterpart, [Au6{μ‐Ph2PN(CH2o‐Py)PPh2}33‐E)2](ClO4)2 (E = S, Se), with bridging bis(diphenylphosphino)amine ligands were synthesized and characterized. The X‐ray crystal structure of the selenido cluster was determined, with the gold core possessing a distorted heterocubane structure. Intramolecular aurophilic interactions with short Au(I)?Au(I) contacts of around 3.09–3.13 Å were observed. The complexes were found to emit strongly in the solid state with orange to red emission colors. Their electronic absorption and emission properties were also investigated.  相似文献   

20.
The reaction of salicylaldoxime (H2salox) with Mn(ClO4)2 · 6H2O, NaN(CN)2 and NEt3 in MeOH affords a MnIII6 hexanuclear complex of [Mn6O2(salox)6(MeOH)6(NCNCONH2)2] (1), while reaction of H2salox with MnCl2 · 4H2O and NEt4OH in EtOH affords a MnIII6 hexanuclear complex of [Mn6O2(salox)6(EtOH)4(H2O)2Cl2] (2). Both complexes 1 and 2 contain a [MnIII63-O)2]14+ core, which is a known structural type in the family of Mn6 complexes. Variable temperature magnetic susceptibilities and magnetization measurement of complexes 1 and 2 have been carried out. Exchange interactions of metal centers for complexes 1 and 2 are fitted by a full diagonalization matrix method. The fitting results indicate that both complexes 1 and 2 have the ground-state spin value of S = 4, and the ground state of complex 1 has the much closer energy to low-lying spin states than that of complex 2. Magnetization measurements at 2.0–4.0 K and 10–70 kG confirm that the ground state is S = 4, with significant magnetoanisotropy as gauged by the D value of ?0.82 cm?1 and ?1.18 cm?1, for 1 and 2, respectively. The frequency dependence of the out-of-phase component in alternating current magnetic susceptibilities for both complexes 1 and 2 indicates the slow magnetic relaxation of superparamagnetic behaviour with a Ueff of 27.0(1) K and τ0 = 3.8(2) × 10?9 s for complex 1, and Ueff of 25.1(6) K and τ0 = 4.6(1) × 10?8 s for complex 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号