首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gao GY  Colvin AJ  Chen Y  Zhang XP 《Organic letters》2003,5(18):3261-3264
[reaction: see text] meso-Aryloxy- and alkoxy-substituted porphyrins were conveniently synthesized by direct reactions of meso-halogenated porphyrins with alcohols via palladium-catalyzed C-O cross-coupling reactions. Using a combination of palladium precursor Pd(OAc)(2) or Pd(2)(dba)(3) and phosphine ligand DPEphos or Xantphos allowed both 5-bromo-10,20-diarylporphyrin and 5,15-dibromo-10,20-diarylporphyrin, as well as their zinc complexes, to be effectively coupled with a variety of alcohols to give the corresponding mono- and bis-substituted meso-aryloxy/alkoxyporphyrins in moderate to high yields under mild conditions.  相似文献   

2.
Esters are chemical compounds with many practical uses. The common type of esterification is called the Fischer esterification. Another one is by the action of acid chlorides on alcohols but not with tertiary alcohols. The stable carbenium ions formed from tertiary alcohols favor elimination and the byproduct, hydrogen chloride prevents ester formation. In this new report, palladium inserted ArCOPdCl species reacts with tertiary alcohols and cross-coupling under microwave heating, minimizes the formation of probable carbenium ion, and promotes successful production of highly substituted esters in good to high yields.  相似文献   

3.
[reaction: see text] The synthesis of various tetrasubstituted alkenes and dienes in a regio- and stereocontrolled manner is described. This three-component coupling strategy involves the addition of Grignard reagents to propargyl alcohols followed by palladium(0)-mediated cross-coupling with aryl or vinyl halides. This protocol has been applied to the synthesis of (Z)-Tamoxifen and related mimics.  相似文献   

4.
Sonogashira cross-coupling reaction is significant for the formation of C―C bonds and the creation of new substance in organic synthesis, which is usually catalyzed using noble metal, such as palladium or non-precious metal, such as copper under harsh reaction conditions. Herein, we report the encapsulation of an organic dye(i.e., Eosin Y, EY) into a Cu(I) cyclic trinuclear unit(CTU) based covalent-metal organic framework(CMOF), namely EY@JNM-1, which demonstrates outstanding photocatalytic performance for the Sonogashira cross-coupling reaction of iodobenzene with alkynes. The EY@JNM-1 not only exhibited high catalytic activity for the alkynes(>99% conversion) and excellent selectivity for the cross-coupling product(>99%) under mild conditions, but also displayed excellent stability and recyclability.  相似文献   

5.
The cross-coupling of Baylis-Hillman acetate adducts and bis(pinacolato)diboron proceeds readily in high yields in the presence of palladium catalyst to produce 3-substituted-2-alkoxycarbonyl allylboronates. These allylboronates can be transformed to stable allyl trifluoroborate salts by addition of excess aqueous KHF2. Both the allylboronate and allyltrifluoroborate derivatives react with aldehydes to afford functionalized homoallylic alcohols stereoselectively.  相似文献   

6.
Palladium-catalyzed cross-coupling of vinyl epoxides and aziridines with organoboronic acids was performed by using 0.5-2.5 mol % pincer-complex catalyst. The reactions proceed under mild conditions affording allyl alcohols and amines with high regioselectivity and in good to excellent yields. Under the applied reaction conditions aromatic chloro-, bromo- and iodo substituents are tolerated. Our results indicate that the mechanism of the pincer complex catalyzed and the corresponding palladium(0) catalyzed process is substantially different. It was concluded that the transformations proceed via transmetalation of the organoboronic acids to the pincer-complex catalyst followed by an S(N)2'-type opening of the vinyl epoxide or aziridine substrate. In this process the palladium atom is kept in oxidation state +2 under the entire catalytic process, and therefore oxidative side reactions can be avoided.  相似文献   

7.
A two-step reaction sequence to homoallylic nitro compounds from allylic alcohols is presented. Ethoxy carbonylation of the alcohols with ethyl chloroformate provides the corresponding allylic ethyl carbonates in high yields. Exposure of these substrates to catalytic palladium(0) in CH(3)NO(2) initiates a reaction sequence, ionization-decarboxylation-nitromethylation, that culminates with the formation of nitroalkenes. The regio- and stereochemical outcomes of the nitromethyl allylation reaction can be explained by the behavior of the transient pi-allylpalladium complexes. This methodology serves as a centerpiece for the synthesis of an important carbocyclic nucleoside intermediate.  相似文献   

8.
We present here our results of the electrophilic cyclization reaction of (Z)-selenoenynes with different electrophiles such as I(2), ICl, PhSeBr, and PhSeCl. The cyclization reaction proceeded cleanly under mild reaction conditions, and 3-substituted selenophenes were formed in moderate to excellent yields. We observed that the nature of solvent and structure of (Z)-selenoenyne were important to the cyclization reaction. In addition, the obtained 3-iodoselenophenes were readily transformed to more complex products using a metal-halogen exchange reaction with n-BuLi and trapping the intermediate formed with aldehydes, furnishing the desired secondary alcohols in good yields. Conversely, using the palladium or copper catalyzed cross-coupling reactions with terminal alkynes or alkyl alcohols, we were able to convert 3-iodoselenophene to Sonogashira or Ullmann type products, respectively, in good yields.  相似文献   

9.
The homolytic cleavage of O−H and N−H or weak C−H bonds is a key elementary step in redox catalysis, but is thought to be unfeasible for palladium. In stark contrast, reported here is the room temperature and reversible oxidative addition of water, isopropanol, hexafluoroisopropanol, phenol, and aniline to a palladium(0) complex with a cyclic (alkyl)(amino)carbene (CAAC) and a labile pyridino ligand, as is also the case in popular N-heterocyclic carbene (NHC) palladium(II) precatalysts. The oxidative addition of protic solvents or adventitious water switches the chemoselectivity in catalysis with alkynes through activation of the terminal C−H bond. Most salient, the homolytic activation of alcohols and amines allows atom-efficient, additive-free cross-coupling and transfer hydrogenation under mild reaction conditions with usually unreactive, yet desirable reagents, including esters and bis(pinacolato)diboron.  相似文献   

10.
Practical catalytic cross-coupling of secondary alkyl electrophiles with secondary alkyl nucleophiles under Cu catalysis has been realized. The use of TMEDA and LiOMe is critical for the success of the reaction. This cross-coupling reaction occurs via an S(N)2 mechanism with inversion of configuration and therefore provides a general approach for the stereocontrolled formation of C-C bonds between two tertiary carbons from chiral secondary alcohols.  相似文献   

11.
A convenient express method for obtaining palladium nanoparticles on the graphene oxide support was developed. The data of transmission electron microscopy and X-ray diffraction analysis indicated the formation of palladium nanoparticles with an average size of 2 nm. The obtained nanocomposite material showed high catalytic activity in the cross-coupling reaction of bromobenzene with phenylboronic acid. The efficiency of the catalyst increases when using a mixture of organic solvents with water.  相似文献   

12.
Li L  Navasero N 《Organic letters》2004,6(18):3091-3094
[reaction: see text] A two-step approach that involves the synthesis of vinylsilane from allyl(isopropoxy)dimethylsilane (6) and the subsequent Pd-catalyzed cross-coupling of the resulting vinylsilane is applied in developing a novel diversity-oriented, three-component synthesis to homoallylic alcohols of common structure 1. Upon treatment of 6 with s-BuLi, the silylallylmetal 5 is generated and reacted with carbonyl compounds to produce functionalized vinylsilanes, which can couple with aryl/vinyl halides in the presence of palladium catalyst to afford 1.  相似文献   

13.
The mechanism of the fluoride-free, palladium-catalyzed cross-coupling reaction of potassium (E)-heptenyldimethylsilanolate, K(+)(E)-1(-), with 2-iodothiophene has been investigated through kinetic analysis. The order of each component was determined by plotting the initial rates of the reaction against concentration. These data provided a mechanistic picture which involves a fast and irreversible oxidative insertion of palladium into the aryl iodide and a subsequent intramolecular transmetalation step from a complex containing a silicon-oxygen-palladium linkage. First-order behavior at low concentrations of silanolate with excess palladium(0) complex supports the formation of this complex as the turnover-limiting step. The change to zeroth-order dependence on silanolate at high concentrations is consistent with the intramolecular transmetalation becoming the turnover-limiting step.  相似文献   

14.
Underappreciated in the realm of palladium catalyzed cross-coupling chemistry is the formation of phosphorous-carbon bonds. This tutorial review summarises a collection of important contributions in the area, providing a flavour of the many types of phosphorus species that are participants in palladium catalyzed phosphorus-carbon bond formation. Recent developments include the usage of the cross-coupling reaction for preparation of phosphine ligands and the involvement of low molecular weight phosphinic acid derivatives for the synthesis of unsaturated phosphinic and phosphonic acid derivatives. Mechanistic cycles are offered in some instances. Stereochemical issues are addressed where applicable. The literature is covered to mid 2003.  相似文献   

15.
Lei A  Lu X 《Organic letters》2000,2(15):2357-2360
The high regio- and stereoselectivity have been obtained from the allylic substitution reaction catalyzed by palladium(II) species. From allylic alcohols, one-pot reaction with tosyl isocyanate followed by palladium(II)-catalyzed allylic substitution gives N-tosyl (E)-allylic amines in high yield. The substitution occurs only at the gamma-position of the 1- or 3-substituted allylic alcohols.  相似文献   

16.
An acetate anion bearing an imidazolium cation as its charge tag was reacted with M(OAc)(2) complexes (where M = Ni, Cu, and Pd; in situ reaction) to form members of a new class of charge-tagged metal complexes. The formation of these unprecedented precatalysts with potential for cross-coupling reactions was confirmed by electrospray ionization (and tandem) mass spectrometry. The catalytic performance of the palladium complex was tested in Heck and Suzuki cross-coupling reactions, often with superior activity and yields as compared with Pd(OAc)(2).  相似文献   

17.
The reaction between palladium acetate and IMES.HCl leads to the formation of a novel palladium complex. The X-ray crystal structure analysis reveals that the palladium is C(2) bound to one NHC ligand (the normal binding mode), whereas the second ligand is attached through the C(5) carbon of the second imidazolium. The metalation site on the imidazolium salt is strongly influenced by the presence of base. Furthermore, the binding mode of the NHC to Pd is shown to substantially affect the catalytic behavior of the palladium complexes in cross-coupling reactions.  相似文献   

18.
The atom-efficient cross-coupling reaction of triarylbismuths with a variety of aliphatic, aromatic, and hetero-aromatic acyl chlorides was demonstrated to afford high yields of cross-coupled ketones under palladium catalysis. The corresponding cross-coupling reaction with diacid chlorides also furnished bis-coupled ketones in good yields.  相似文献   

19.
Cross-coupling processes of aryl or alkenyl halides with organometallic compounds of main group elements cat alyzed by palladium complexes have been found extensive use in organic synthesis. These cross-coupling reactions offer a powerful tool for the formation of carbon-carbon bonds. [1] The Suzuki-Miyaura cross-coupling reaction has been employed for the synthesis of ketone as well.  相似文献   

20.
以柑橘皮果胶为载体,采用吸附法制备了果胶负载钯催化剂,并将其应用于四苯硼钠与溴代芳烃的交叉偶联反应中.该反应体系以聚乙二醇400(PEG 400)/H2O为反应溶剂,三乙胺为碱,在空气中于110℃反应15~60 min,四苯硼钠中4个苯基均可顺利参与反应,高产率地获得相应的目标化合物.该方法具有条件温和、反应时间短、收率高且催化剂可循环利用等优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号