首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The reaction of 2,2'-dilithiumbiphenyl with cis-[PtCl(2)(SEt(2))(2)] at -10 degrees C in diethyl ether not only leads to the main product [Pt(2)(micro-SEt(2))(2)(bph)(2)], containing the planar 2,2'-biphenyl dianion (bph(2)(-)), but also forms a new dinuclear platinum(II) compound of formula [Pt(2)(micro-SEt(2))(2)(Hbph)(4)], 1a (Hbph(-) = eta(1)-biphenyl monoanion), in which each metal is in a square-planar environment. NMR spectroscopy and molecular mechanics (MMFF) calculations were used to characterize 1a. The results suggest that the favored conformation for the four Hbph biphenyl groups is alphabetabetaalpha. In chloroform solution, 1a undergoes atropisomerization to 1b (alphabetaalphabeta) (k(is) = 1.03 x 10(-)(4) s(-)(1), at 298 K) that subsequently cyclometalates (k(obs) = 4.48 x 10(-)(6) s(-)(1), at 298 K) to yield [Pt(2)(micro-SEt(2))(2)(bph)(2)] and biphenyl. Both processes, atropisomerization and C-H activation, presumably involve preliminary thioether bridge splitting. The dinuclear complex 1a has been shown to be a versatile and useful precursor to a variety of mononuclear eta(1)-biphenyl platinum(II) complexes. By reaction with diethyl sulfide, dimethyl sulfoxide, or with rigid dinitrogen containing ligands, such as 2,2'-bipyridine or 1,10-phenanthroline, complexes cis-[Pt(Hbph)(2)(dmso)(2)] 3, cis-[Pt(Hbph)(2)(SEt(2))(2)] 4, [Pt(Hbph)(2)(bpy)] 5, and [Pt(Hbph)(2)(phen)] 6 were obtained, respectively. The crystal structures of compounds 5 and 6 were determined. Only the head-to-tail isomer of these compounds was recognized in the solid state and in solution, where restricted rotation around the Pt-C bond prevents interconversion to the head-to-head form. A detailed kinetic study of ligand (dmso) exchange and substitution (by 2,2'-bipyridine and 1,10-phenanthroline) has been performed on complex 3 in CDCl(3) and toluene-d(8) by (1)H NMR magnetization transfer experiments, and in toluene by UV/vis spectroscopy, respectively. The rates of both processes show no dependence on ligand concentration, the rate of ligand substitution being in reasonable agreement with that of ligand exchange at the same temperature. The kinetics are characterized by largely positive entropies of activation. The results are consistent with a dissociative mode of activation analogous to the pattern already found for compounds with a similar [Pt(C,C)(S,S)] set of coordinating ligands. The role of ML(3) d(8) T-shaped 14-electron species, as elusive reaction intermediates or structurally characterized compounds, is discussed.  相似文献   

2.
The water exchange process on [(CO)(3)Re(H(2)O)(3)](+) (1) was kinetically investigated by (17)O NMR. The acidity dependence of the observed rate constant k(obs) was analyzed with a two pathways model in which k(ex) (k(ex)(298) = (6.3 +/- 0.1) x 10(-3) s(-1)) and k(OH) (k(OH)(298)= 27 +/- 1 s(-1)) denote the water exchange rate constants on 1 and on the monohydroxo species [(CO)(3)Re(I)(H(2)O)(2)(OH)], respectively. The kinetic contribution of the basic form was proved to be significant only at [H(+)] < 3 x 10(-3) M. Above this limiting [H(+)] concentration, kinetic investigations can be unambiguously conducted on the triaqua cation (1). The variable temperature study has led to the determination of the activation parameters Delta H(++)(ex) = 90 +/- 3 kJ mol(-1), Delta S(++)(ex) = +14 +/- 10 J K(-1) mol(-1), the latter being indicative of a dissociative activation mode for the water exchange process. To support this assumption, water substitution reaction on 1 has been followed by (17)O/(1)H/(13)C/(19)F NMR with ligands of various nucleophilicities (TFA, Br(-), CH(3)CN, Hbipy(+), Hphen(+), DMS, TU). With unidentate ligands, except Br(-), the mono-, bi-, and tricomplexes were formed by water substitution. With bidentate ligands, bipy and phen, the chelate complexes [(CO)(3)Re(H(2)O)(bipy)]CF(3)SO(3) (2) and [(CO)(3)Re(H(2)O)(phen)](NO(3))(0.5)(CF(3)SO(3))(0.5).H(2)O (3) were isolated and X-ray characterized. For each ligand, the calculated interchange rate constants k'(i) (2.9 x 10(-3) (TFA) < k'(I) < 41.5 x 10(-3) (TU) s(-1)) were found in the same order as the water exchange rate constant k(ex), the S-donor ligands being slightly more reactive. This result is indicative of I(d) mechanism for water exchange and complex formation, since larger variations of k'(i) are expected for an associatively activated mechanism.  相似文献   

3.
The reaction of the functional diphosphine 1 [1 = 2-(bis(diphenylphosphino)methyl-oxazoline] with [PtCl(2)(NCPh)(2)] or [PdCl(2)(NCPh)(2)], in the presence of excess NEt(3), affords [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pt(1(-H)-P,P)(2)], 3a) and [Pd{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pd(1(-H)-P,P)(2)], 3b), respectively, in which 1(-H) is (oxazoline-2-yl)bis(diphenylphosphino)methanide. The reaction of 3b with 2 equiv of [AuCl(tht)] (tht = tetrahydrothiophene) afforded [Pd(1(-H)-P,N)(2)(AuCl)(2)] (4), as a result of the opening of the four-membered metal chelate since ligand 1(-H), which was P,P-chelating in 3b, behaves as a P,N-chelate toward the Pd(II) center in 4 and coordinates to Au(I) through the other P donor. In the absence of a base, the reaction of ligand 1 with [PtCl(2)(NCPh)(2)] in MeCN or CH(2)Cl(2) afforded the isomers [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}(2)]Cl(2) ([Pt(1'-P,P)(2)]Cl(2) (5), 1' = 2-(bis(diphenylphosphino)methylene)-oxazolidine) and [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}{Ph(2)PCH═C(OCH(2)CH(2)N(PPh(2))}]Cl(2) ([Pt(1'-P,P)(2'-P,P)]Cl(2) (6), 2' = (E)-3-(diphenylphosphino)-2-((diphenylphosphino)methylene)oxazolidine]. The P,P-chelating ligands in 5 result from a tautomeric shift of the C-H proton of 1 to the nitrogen atom, whereas the formation of one of the P,P-chelates in 6 involves a carbon to nitrogen phosphoryl migration. The reaction of 5 and 6 with a base occurred by deprotonation at the nitrogen to afford 3a and [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PCH═COCH(2)CH(2)N(PPh(2))}]Cl ([Pt(1(-H)-P,P)(2'-P,P)]Cl (7)], respectively. In CH(2)Cl(2), an isomer of 3a, [Pt{Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PC(PPh(2))═COCH(2)CH(2)N}] ([Pt(1(-H)-P,P)(1(-H)-P,N)] (8)), was obtained as a side product which contains ligand 1(-H) in two different coordination modes. Complexes 3b·4CH(2)Cl(2), 4·CHCl(3), 6·2.5CH(2)Cl(2), and 8·CH(2)Cl(2) have been structurally characterized by X-ray diffraction.  相似文献   

4.
Detailed equilibrium and kinetic studies on axial water ligand substitution reactions of the "lantern-type" platinum(III) binuclear complex, [Pt(2)(mu-HPO(4))(4)(H(2)O)(2)](2)(-), with halide and pseudo-halide ions (X(-) = Cl(-), Br(-), and SCN(-)) were carried out in acidic aqueous solution at 25 degrees C with I = 1.0 M. The diaqua Pt(III) dimer complex is in acid dissociation equilibrium in aqueous solution with -log K(h1) = 2.69 +/- 0.04. The consecutive formation constants of the aquahalo complex () and the dihalo complex () were determined spectrophotometrically to be log = 2.36 +/- 0.01 and log = 1.47 +/- 0.01 for the reaction with Cl(-) and log = 2.90 +/- 0.04 and log = 2.28 +/- 0.01 for the reaction with Br(-), respectively. In the kinetic measurements carried out under the pseudo-first-order conditions with a large excess concentration of halide ion compared to that of Pt(III) dimer (C(X)()- > C(Pt)), all of the reactions proceeded via a one-step first-order reaction, which is a contrast to the consecutive two-step reaction for the amidato-bridged platinum(III) binuclear complexes. The conditional first-order rate constant (k(obs)) depended on C(X)()- as well as the acidity of the solution. From kinetic analyses, the rate-limiting step was determined to be the first substitution process that forms the monohalo species, which is in rapid equilibrium with the dihalo complex. The reaction with 4-penten-1-ol was also kinetically investigated to examine the reactivity of the lantern complex with olefin compounds.  相似文献   

5.
Kishi S  Kato M 《Inorganic chemistry》2003,42(26):8728-8734
Three linkage isomers, bis(thiocyanato-S)(2,2'-bipyridine)platinum(II) ([Pt(SCN)(2)(bpy)]), (thiocyanato-S)(thiocyanato-N)(2,2'-bipyridine)platinum(II) ([Pt(SCN)(NCS)(bpy)]), and bis(thiocyanato-N)(2,2'-bipyridine)platinum(II) ([Pt(NCS)(2)(bpy)]) were isolated, and their structures were elucidated. The crystal data are as follows: for [Pt(SCN)(2)(bpy)], C(12)H(8)N(4)S(2)Pt, orthorhombic, P2(1)2(1)2(1) (No. 19), a = 12.929(9) A, b = 18.67(1) A, c = 5.497(4) A, Z = 4; for [Pt(SCN)(NCS)(bpy)], C(12)H(8)N(4)S(2)Pt, monoclinic, P2(1)/n (No. 14), a = 10.909(7) A, b = 7.622(4) A, c = 16.02(1) A, beta = 102.323(7) degrees, Z = 4; for [Pt(NCS)(2)(bpy)], C(12)H(8)N(4)S(2)Pt, orthorhombic, Pbcm (No. 57), a = 10.3233(8) A, b = 19.973(2) A, c = 6.4540(5) A, Z = 4. The stacking structures of the isomers were found to be different depending on the coordination geometries based on the N- and S-coordination of the thiocyanato ligands, which control the color and luminescence of the crystals sensitively. The isomerization behaviors of the complex have been investigated both in solution and in the solid state. In solution, stepwise thermal isomerization from [Pt(SCN)(2)(bpy)] to [Pt(NCS)(2)(bpy)] by way of [Pt(SCN)(NCS)(bpy)] was observed using (1)H NMR spectroscopy. Reverse isomerization, from [Pt(NCS)(2)(bpy)] to [Pt(SCN)(NCS)(bpy)] and [Pt(SCN)(2)(bpy)], occurred when irradiated with near ultraviolet (UV) light. In contrast, the [Pt(SCN)(2)(bpy)] yellow crystals exhibited thermal isomerization directly to red crystals of [Pt(NCS)(2)(bpy)], as detected by changes in the emission spectrum, which indicates that the flip of two SCN(-) ligands correlatively occurred in the solid state. The yellow crystals of [Pt(SCN)(NCS)(bpy)] were also converted to the thermodynamically stable red crystal of [Pt(NCS)(2)(bpy)] though the reverse isomerization has never been observed to occur by photoirradiation in the solid state.  相似文献   

6.
The competition between pyridine ligand loss in square planar Pt(II) complexes has been examined using the doubly and singly charged ions of complexes consisting of platinum(ethylenediamine) coordinated to two different substituted pyridines. Collision induced dissociation (CID) of [Pt(en)Py(1)Py(2)](2+) (where Py(1) = one of ten different substituted pyridines and Py(2) = pyridine) results in loss of the protonated pyridines to yield the singly charged platinum ions [Pt(en)Py(1)-H](+) and [Pt(en)Py(2)-H](+). In contrast, fragmentation of [Pt(en)Py(1)Py(2)-H](+) results in neutral pyridine loss to yield the ions [Pt(en)Py(1)-H](+) and [Pt(en)Py(2)-H](+). In the latter case, the correlation between relative losses of each pyridine compared to their gas-phase proton affinities is poor. A novel chloride ion abstraction reaction occurs for the fragmentation of [Pt(en)Py(1)Py(2)](2+) when Py(1) = o-C(5)H(4)CIN and Py(2) = C(5)H(5)N, to yield the [Pt(en)(Cl)Py(2)](+) and [o-C(5)H(4)N](+) pair of ions. In order to model this process the competition between nitrogen and chlorine binding in [Pt(NH(3))(3)(o-NC(5)H(4)Cl)](2+) has been examined using density functional theory (DFT) calculations at the B3LYP/LANL2DZ level of theory. Both adducts are minima with the N adduct being more stable than the Cl adduct by 22.7 kcal mol(-1). Furthermore, the Cl adduct exhibits a significant stretching of the C-Cl bond (to 1.935 A), consistent with the observed chloride ion abstraction reaction, which is endothermic by 9.0 kcal mol(-1) (relative to the N adduct).  相似文献   

7.
(E)-2-(m-methoxymesityl)-1,2-dimesitylethenol (3a) isomerizes in the absence of a catalyst in solution to a 1.0:0.9 E/Z (3a/3b) equilibrium mixture. In CDCl3 the isomerization is first order in 3a within a run, but the plot of the rate constant k(obs) vs the changing [3a]0 in different runs is a half-parabola, indicating self-catalysis by more than one enol molecule. At 0.09 M enol, the isotope effect k(3a)/k(3a)-OD = 2.1. In the presence of 0.025-0.25 M pyridine-d5, the k(obs) vs [pyridine-d5] plot displays a bell-shaped profile. The change in the shape of the OH signals of the 3a/3b mixture at 295-430 K in C6D5NO2 was followed by DNMR. The four signals of the diastereomeric 3a/3b mixture observed at 330 K coalesce at 350 K with barriers of 18.3 and 18.4 kcal x mol(-1) due to the diastereomerization of the vinyl propellers. The resulting two signals observed at >360 K further coalesce at 425 K with a barrier of 22.9 kcal x mol(-1) due either to oxygen-to-oxygen proton exchange or to E/Z isomerization. The estimated upper limit for the rate of proton exchange of k(ex) < or = (2-4) x 10(3) M(-1) x s(-1) at 425 K between the enol molecules is sufficiently slow to be a rate-controlling step in the isomerization. A process in which several enol molecules catalyze the isomerization is suggested, and several mechanistic routes are analyzed.  相似文献   

8.
Teo P  Koh LL  Hor TS 《Inorganic chemistry》2003,42(22):7290-7296
Dinuclear Pt(2)Br(2)(dppf)(2)(mu-C(8)H(4)S(2)) exchanges with isonicotinic acid to release free bithiophene and gives a molecular square [Pt(4)(dppf)(4)(mu(2)-O(2)CC(5)H(4)N)(4)](4+)4OTf(-) which is an "all-ring" system with four Pt rings disposed at the corners of a larger macrocyclic ring. The related mononuclear complex PtBr(eta(1)(C2)-C(4)H(3)S)(dppf) reacts with AgOTf (OTf = triflate) to give [Pt(2)(dppf)(2)(mu(2),eta(1)(C),eta(1)(S)-C(4)H(3)S)(2)](2+)2OTf(-) with an unusual six-membered ring formed by the fusion of two Pt-thienyl entities at the sulfur sites. All the complexes are structurally characterized by single-crystal X-ray crystallography.  相似文献   

9.
Platinum(II) complexes with (fluoren-9-ylidene)methanedithiolato and its 2,7-di-tert-butyl- and 2,7-dimethoxy-substituted analogues were obtained by reacting different chloroplatinum(II) precursors with the piperidinium dithioates (pipH)[(2,7-R2C12H6)CHCS2] [R = H (1a), t-Bu (1b), or OMe (1c)] in the presence of piperidine. The anionic complexes Q2[Pt{S(2)C=C(C12H6R(2)-2,7)}2] [R = H, (Pr(4)N)(2)2a; R = t-Bu, (Pr4N)(2)2b, (Et4N)(2)2b; R = OMe, (Pr4N)(2)2c] were prepared from PtCl(2), piperidine, the corresponding QCl salt, and 1a-c in molar ratio 1:2:2:2. In the absence of QCl, the complexes (pipH)(2)2b and [Pt(pip)(4)]2b were isolated depending on the PtCl(2):pip molar ratio. The neutral complexes [Pt{S2C=C(C12H6R(2)-2,7)L(2)] [L = PPh(3), R = H (3a), t-Bu (3b), OMe (3c); L = PEt(3), R = H (4a), t-Bu (4b), OMe (4c); L(2) = dbbpy, R = H (5a), t-Bu (5b), OMe (5c) (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridyl)] were similarly prepared from the corresponding precursors [PtCl2L2] and 1a-c in the presence of piperidine. Oxidation of Q(2)2b with [FeCp2]PF6 afforded the mixed Pt(II)-Pt(IV) complex Q2[Pt2{S2C=C[C12H6(t-Bu)(2)-2,7]}4] (Q(2)6, Q = Et4N+, Pr4N+). The protonation of (Pr4N)(2)2b with 2 equiv of triflic acid gave the neutral dithioato complex [Pt2{S2CCH[C12H6(t-Bu)(2)-2,7]}4] (7). The same reaction in 1:1 molar ratio gave the mixed dithiolato/dithioato complex Pr4N[Pt{S2C=C[C12H6(t-Bu)(2)-2,7]}{S2CCH[C12H6(t-Bu)(2)-2,7]}] (Pr(4)N8) while the corresponding DMANH+ salt was obtained by treating 7 with 2 equiv of 1,8-bis(dimethylamino)naphthalene (DMAN). The crystal structures of 3b and 5c.CH2Cl2 have been solved by X-ray crystallography. All the platinum complexes are photoluminescent at 77 K in CH2Cl2 or KBr matrix, except for Q(2)6. Compounds 5a-c and Q8 show room-temperature luminescence in fluid solution. The electronic absorption and emission spectra of the dithiolato complexes reveal charge-transfer absorption and emission energies which are significantly lower than those of analogous platinum complexes with previously described 1,1-ethylenedithiolato ligands and in most cases compare well to those of 1,2-dithiolene complexes.  相似文献   

10.
The N7/O6 equatorial binding interactions of the antitumor active complex Rh(2)(OAc)(4)(H(2)O)(2) (OAc(-) = CH(3)CO(2)(-)) with the DNA fragment d(GpG) have been unambiguously determined by NMR spectroscopy. Previous X-ray crystallographic determinations of the head-to-head (HH) and head-to-tail (HT) adducts of dirhodium tetraacetate with 9-ethylguanine (9-EtGH) revealed unprecedented bridging N7/O6 guanine nucleobases that span the Rh-Rh bond. The absence of N7 protonation at low pH and the notable increase in the acidity of N1-H (pK(a) approximately 5.7 as compared to 8.5 for N7 only bound platinum adducts), suggested by the pH dependence titrations of the purine H8 (1)H NMR resonances for Rh(2)(OAc)(2)(9-EtG)(2) and Rh(2)(OAc)(2-)[d(GpG)],are consistent with bidentate N7/O6 binding of the guanine nucleobases. The pK(a) values estimated for N1-H (de)protonation, from the pH dependence studies of the C6 and C2 (13)C NMR resonances for the Rh(2)(OAc)(2)(9-EtG)(2) isomers, concur with those derived from the H8 (1)H NMR resonance titrations. Comparison of the (13)C NMR resonances of C6 and C2 for the dirhodium adducts Rh(2)(OAc)(2)(9-EtG)(2) and Rh(2)(OAc)(2)[d(GpG)] with the corresponding resonances of the unbound ligands [at pH 7.0 for 9-EtGH and pH 8.0 for d(GpG)], shows substantial downfield shifts of Deltadelta approximately 11.0 and 6.0 ppm for C6 and C2, respectively; the latter shifts reflect the effect of O6 binding to the dirhodium centers and the ensuing enhancement in the acidity of N1-H. Intense H8/H8 ROE cross-peaks in the 2D ROESY NMR spectrum of Rh(2)(OAc)(2)[d(GpG)] indicate head-to-head arrangement of the guanine bases. The Rh(2)(OAc)(2)[d(GpG)] adduct exhibits two major right-handed conformers, HH1 R and HH2 R, with HH1 R being three times more abundant than the unusual HH2 R. Complete characterization of both adducts revealed repuckering of the 5'-G sugar rings to C3'-endo (N-type), retention of C2'-endo (S-type) conformation for the 3'-G sugar rings, and anti orientation with respect to the glycosyl bonds. The structural features obtained for Rh(2)(OAc)(2))[d(GpG)] by means of NMR spectroscopy are very similar to those for cis-[Pt(NH(3))(2))[d(GpG)]] and corroborate molecular modeling studies.  相似文献   

11.
The effect of Pt(2+) coordination, in particular of (dien)Pt(2+) or cis-(NH(3))(2)Pt(2+), on the acid-base properties of the purine ligands 9-ethylguanine (9EtG), 9-methylhypoxanthine (9MeHx), inosine (Ino), 9-methyladenine (9MeA), and N6',N6',N9-trimethyladenine (TriMeA) is quantitatively evaluated. The corresponding acidity constants of the complexes are calculated by curve-fitting procedures using previously published (1)H NMR shift data which had been measured in aqueous solution (D(2)O) in dependence on pH (pD). Comparison of the pK(a) values of the ligands with those of the Pt(2+) complexes reveals the expected behavior for the (N7)-platinated complexes; i.e., the (N1)H(0/+) sites are acidified due to charge repulsion. However, Pt(2+) coordination at (N1)(-)(/0) sites leads to an (already previously observed) apparent increase in the basicity of the N7 sites for the guanine, hypoxanthine, and adenine residues; this is also the case if Pt(2+) is bound to N3. Coordination of Pt(2+) to both the (N1)(-) and N7 sites of 9EtG results apparently in an enhanced basicity of N3 if compared with the release of the proton from the (N3)H(+) site in H(2)(9EtG)(2+). For the former cases in aqueous solution (H(2)O) it is now proven for a comprehensive set of data (seven examples), by taking into account the intrinsic basicities of the various N7 sites via micro acidity constants, that the acidifications are reciprocal and identical. This means Pt(2+) coordinated to (N1)(-)(/0) sites in guanine, hypoxanthine, or adenine residues acidifies the (N7)H(+) unit to the same extent as (N7)-coordinated Pt(2+) acidifies the (N1)H(0/+) site. In other words, the apparently increased basicity of N7 upon Pt(2+) coordination at (N1)(-)(/0) sites disappears if the micro acidity constants of the appropriate isocharged tautomers of the ligand are properly taken into account. It is further proven, on the basis of the evaluations of the nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA), that these given conclusions are also valid for nucleotides. In addition, it is shown that the mentioned apparent basicity increase, which results from the use of macro acidity constants, has its origin in the fact that the proton-metal ion (Pt(2+)) interaction (the extent of which depends on the kind of metal ion involved) is less pronounced than the proton-proton interaction. Finally, the proven reciprocal behavior will now allow one to determine micro acidity constants of ligands by studying complexes formed with kinetically inert metal ions. A further result of interest is the proof that the competition of Pt(2+) (or Pd(2+)) with the proton for the (N1)(-) and N7 binding sites of inosinate results in the isomer where the metal ion is at N7 with the proton relegated to (N1)(-); this isomer is favored by a factor of about 2000 compared with the one having the metal ion at (N1)(-) and the proton at N7.  相似文献   

12.
Kinetic studies were performed with microperoxidase-8 (Fe(III)MP-8), the proteolytic breakdown product of horse heart cytochrome c containing an octapeptide linked to an iron protoporphyrin IX. Mn(III) was substituted for Fe(III) in Mn(III)MP-8.The mechanism of formation of the reactive metal-oxo and metal-hydroperoxo intermediates of M(III)MP-8 upon reaction of H(2)O(2) with Fe(III)MP-8 and Mn(III)MP-8 was investigated by rapid-scan stopped-flow spectroscopy and transient EPR. Two steps (k(obs1) and k(obs2)) were observed and analyzed for the reaction of hydrogen peroxide with both catalysts. The plots of k(obs1) as function of [H(2)O(2)] at pH 8.0 and pH 9.1 for Fe(III)MP-8, and at pH 10.2 and pH 10.9 for Mn(III)MP-8, exhibit saturation kinetics, which reveal the accumulation of an intermediate. Double reciprocal plots of 1/k(obs1) as function of 1/[H(2)O(2)] at different pH values reveal a competitive effect of protons in the oxidation of M(III)MP-8. This effect of protons is confirmed by the linear dependence of 1/k(obs1) on [H(+)] showing that k(obs1) increases with the pH. The UV-visible spectra of the intermediates formed at the end of the first step (k(obs1)) exhibit a spectrum characteristic of a high-valent metal-oxo intermediate for both catalysts. Transient EPR of Mn(III)MP-8 incubated with an excess of H(2)O(2), at pH 11.5, shows the detection of a free radical signal at g approximately equal to 2 and of a resonance at g approximately equal to 4 characteristic of a Mn(IV) (S = 3/2) species. On the basis of these results, the following mechanism is proposed: (i) M(III)MP-8-OH(2) is deprotonated to M(III)MP-8-OH in a rapid preequilibrium step, with a pK(a) = 9.2 +/- 0.9 for Fe(III)MP-8 and a pK(a) = 11.2 +/- 0.3 for Mn(III)MP-8; (ii) M(III)MP-8-OH reacts with H(2)O(2) to form Compound 0, M(III)MP8-OOH, with a second-order rate constant k(1) = (1.3 +/- 0.6) x 10(6) M(-1) x s(-1) for Fe(III)MP-8 and k(1) = (1.6 +/- 0.9) x 10(5) M(-1) x s(-1) for Mn(III)MP-8; (iii) this metal-hydroperoxo intermediate is subsequently converted to a high-valent metal-oxo species, M(IV)MP-8=O, with a free radical on the peptide (R(*+)). The first-order rate constants for the cleavage of the hydroperoxo group are k(2) = 165 +/- 8 s(-1) for Fe(III)MP-8 and k(2) = 145 +/- 7 s(-1) for Mn(III)MP-8; and (iv) the proposed M(IV)MP-8=O(R(*+)) intermediate slowly decays (k(obs2)) with a rate constant of k(obs2) = 13.1 +/- 1.1 s(-)(1) for Fe(III)MP-8 and k(obs2) = 5.2 +/- 1.2 s(-1) for Mn(III)MP-8. The results show that Compound 0 is formed prior to what is analyzed as a high-valent metal-oxo peptide radical intermediate.  相似文献   

13.
A series of [(R-iso-BIPY)Pt(CH(3))L ](+)X(-) complexes [R-iso-BIPY = N-(2-pyridyl)-R-pyridine-2-ylidene; (R = 4-H, 1; 4-tert-butyl, 2; 4-dimethylamino, 3; 5-dimethylamino, 4); L = SMe(2), b; dimethyl sulfoxide (DMSO), c; carbon monoxide (CO), d; X = OTf(-) = trifluoromethanesulfonate and/or [BPh(4)](-)] were synthesized by cyclometalation of the [R-iso-BIPY-H](+)[OTF](-) salts 1a-4a ([R-iso-BIPY-H](+) = N-(2-pyridyl)-R-pyridinium) with dimethylplatinum-micro-dimethyl sulfide dimer. X-ray crystal structures for 1b, 2c-4c as well as complexes having bipyridyl and cyclometalated phenylpyridine ligands, [(bipy)Pt(CH(3))(DMSO)](+) (5c) and (C(11)H(8)N)Pt(CH(3))(DMSO) (6c), have been determined. The pyridinium-derived N-heterocyclic carbene complexes display localized C-C and C-N bonds within the pyridinium ligand that are indicative of carbene pi-acidity. The significantly shortened platinum-carbon distance, for "parent" complex 1b, together with NMR parameters and the nu(CO) values for carbonyl cations 1d-4d support a degree of Pt-C10 multiple bonding, increasing in the order 3 < 4 < 2 < 1. Degenerate DMSO exchange kinetics have been determined to establish the nature and magnitude of the trans-labilizing ability of these new N-heterocyclic carbene ligands. Exceptionally large second-order rate constants (k(2) = 6.5 +/- 0.4 M(-1).s(-1) (3c) to 2300 +/- 500 M(-1).s(-1) (1c)) were measured at 25 degrees C using (1)H NMR magnetization transfer kinetics and variable temperature line shape analysis. These rate constants are as much as 4 orders of magnitude greater than those of a series of structurally similar cationic bis(nitrogen)-donor complexes [(N-N)Pt(CH(3))(DMSO)](+) reported earlier, and a factor of 32 to 1800 faster than an analogous charge neutral complex derived from cyclometalated 2-phenylpyridine, (C(11)H(8)N)Pt(CH(3))(DMSO) (k(2) = 0.21 +/- 0.02 M(-1).s(-1) (6c)). The differences in rate constant are discussed in terms of ground state versus transition state energies. Comparison of the platinum-sulfur distances with second order rate constants suggests that differences in the transition-state energy are largely responsible for the range of rate constants measured. The pi-accepting ability and trans-influence of the carbene donor are proposed as the origin of the large acceleration in associative ligand substitution rate.  相似文献   

14.
The dinuclear hydroxo complex cis-[L(2)Pt(mu-OH)](2)(NO(3))(2) (L = PMePh(2), 1), in CH(2)Cl(2), CH(3)CN, or DMF solution, deprotonates the NH(2) group of 9-methyladenine (9-MeAd) to give the complex cis-[L(2)Pt[9-MeAd(-H)]](3)(NO(3))(3), 2, which was isolated in good yield. The X-ray structure shows that the nucleobase binds symmetrically the metal centers through the N(1),N(6) atoms forming a cyclic trimer with Pt...Pt distances in the range 5.202(1)-5.382(1) A. Dissolution of 2 in DMSO or DMF determines the partial (or total) dissociation of the cyclic structure to form several fragments. A multinuclear NMR analysis of the resulting mixture supports the presence of the mononuclear species cis-[L(2)Pt[9-MeAd(-H)]](+), 3, in which the deprotonated nucleobase chelates the metal center with the N(6),N(7) atoms. Addition of a stoichiometric amount of the nitrato complex cis-[L(2)Pt(ONO(2))(2)] (L = PMePh(2), 4) to a DMSO or DMF solution of 2 affords quantitatively the diplatinated compound cis-[L(2)Pt(ONO(2))[9-MeAd(-H)]PtL(2)](NO(3))(2), 5. The single-crystal X-ray analysis shows that the adenine behaves as a tridentate ligand bridging two cis-L(2)Pt units at the N(1) and N(6),N(7) sites, respectively [Pt(1)-N(1) = 2.109(5) A, Pt(2)-N(6) = 2.095(7) A, Pt(2)-N(7) = 2.126(7) A]. The N(1)-bonded metal center completes the coordination sphere through an oxygen atom of a nitrate group, and its coordination plane is arranged orthogonally with respect the second one. The Pt-O distance [2.109(5) A] is similar to those found in the nitrato complex 4 [2.110 A, average]. The related complex cis-[[L(2)Pt(ONO(2))](2)(9-MeAd)](NO(3))(2), 6, containing the neutral adenine platinated at the N(1),N(7) atoms, was isolated and its stability in solution investigated by NMR spectroscopy. In DMSO, 6 undergoes decomposition forming a mixture of the species 4, 5, and the adenine mono- and bis-adducts cis-[L(2)Pt(9-MeAd)(DMSO)](2+), 7, and cis-[L(2)Pt(9-MeAd)(2)](2+), 8, respectively. This last complex, quantitatively formed upon addition of 9-MeAd (Pt/adenine = 1:2) to the mixture, was also isolated and characterized.  相似文献   

15.
The diimine platinum(II) ethylene hydride complex [(N/\N)Pt(H)(ethylene)][BAr'4] (1, N/\N = [(2,6-Me2C6H3)N=C(An)-C(An)=N(2,6-Me2C6H3)], An = 1,8-naphthalenediyl, Ar' = 3,5-(CF3)2C6H3) was prepared by protonation of the diethyl complex (N/\N)PtEt2 with [H(OEt2)2][BAr'4]. The energy barrier to interchange of the platinum hydride with the olefinic hydrogens in 1 was determined to be 19.2 kcal/mol by spin saturation transfer experiments. Complex 1 initiates ethylene dimerization; the ethyl ethylene complex (N/\N)Pt(Et)(ethylene)+ (2) has been identified as the catalyst resting state. Trapping of 1 by ethylene to yield 2 is a second-order process; kinetic studies suggest this occurs via trapping of a reversibly formed beta-agostic ethyl complex. Complex 2 has been isolated and characterized by X-ray crystallography. The barrier to migratory insertion of 2, the turnover-limiting step in catalysis, was determined to be 29.8 kcal/mol. The 1-butene hydride complex, (N/\N)Pt(H)(1-butene)+ (3), is a key intermediate in the dimerization cycle and has also been isolated and characterized. Surprisingly rapid rates of degenerate associative exchange of free ethylene with bound ethylene in complexes 1 and 2 as well as the rate of degenerate exchange of free nitrile with bound nitrile in (N/\N)Pt(Et)(CH3CN)+ are reported.  相似文献   

16.
Methanol solutions containing Cd(II), Mn(II), and a palladacycle, (dimethanol bis(N,N-dimethylbenzylamine-2C,N)palladium(II) (3), are shown to promote the methanolytic transesterification of O-methyl O-4-nitrophenyl phosphorothioate (2b) at 25 °C with impressive rate accelerations of 10(6)-10(11) over the background methoxide promoted reaction. A detailed mechanistic investigation of the methanolytic cleavage of 2a-d having various leaving group aryl substitutions, and particularly the 4-nitrophenyl derivative (2b), catalyzed by Pd-complex 3 is presented. Plots of k(obs) versus palladacycle [3] demonstrate strong saturation binding to form 2b:3. Numerical fits of the kinetic data to a universal binding equation provide binding constants, K(b), and first order catalytic rate constants for the methanolysis reaction of the 2b:3 complex (k(cat)) which, when corrected for buffer effects, give corrected (k(cat)(corr)) rate constants. A sigmoidal shaped plot of log(k(cat)(corr)) versus (s)(s)pH (in methanol) for the cleavage of 2b displays a broad (s)(s)pH independent region from 5.6 ≤ (s)(s)pH ≤ 10 with a k(minimum) = (1.45 ± 0.24) × 10(-2) s(-1) and a [lyoxide] dependent wing plateauing above a kinetically determined (s)(s)pK(a) of 12.71 ± 0.17 to give a k(maximum) = 7.1 ± 1.7 s(-1). Br?nsted plots were constructed for reaction of 2a-d at (s)(s)pH 8.7 and 14.1, corresponding to reaction in the midpoints of the low and high (s)(s)pH plateaus. The Br?nsted coefficients (β(LG)) are computed as -0.01 ± 0.03 and -0.86 ± 0.004 at low and high (s)(s)pH, respectively. In the low (s)(s)pH plateau, and under conditions of saturating 3, a solvent deuterium kinetic isotope effect of k(H)/k(D) = 1.17 ± 0.08 is observed; activation parameters (ΔH(Pd)(++) = 14.0 ± 0.6 kcal/mol and ΔS(Pd)(++)= -20 ± 2 cal/mol·K) were obtained for the 3-catalyzed cleavage reaction of 2b. Possible mechanisms are discussed for the reactions catalyzed by 3 at low and high sspH. This catalytic system is shown to promote the methanolytic cleavage of O,O-dimethyl phosphorothioate in CD3OD, producing (CD3O)2P═O(S(-)) with a half time for reaction of 34 min.  相似文献   

17.
The hydroxo complex cis-[L2Pt(mu-OH)]2(NO3)2 (L = PMe2Ph), in various solvents, reacts with 1-methylcytosine (1-MeCy) to give as the final product the cyclic species cis-[L2Pt{1-MeCy(-H),N 3N 4}]3(NO3)3 (1) in high or quantitative yield. X-ray analysis of 1 evidences a trinuclear species with the NH(2)-deprotonated nucleobases bridging symmetrically the metal centers through the N3 and N4 donors. A multinuclear NMR study of the reaction in DMSO-d6 reveals the initial formation of the dinuclear species cis-[L2Pt{1-MeCy(-H),N 3N 4}]2(2+) (2), which quantitatively converts into 1 following a first-order kinetic law (at 50 degrees C, t(1/2) = 5 h). In chlorinated solvents, the deprotonation of the nucleobase affords as the major product (60-70%) the linkage isomer of 1, cis-[L2Pt{1-MeCy(-H)}]3(3+) (3), in which three cytosinate ligands bridge unsymmetrically three cis-L2Pt(2+) units. In solution, 3 slowly converts quantitatively into the thermodynamically more stable isomer 1. No polynuclear adducts were obtained with the hydroxo complex stabilized by PPh3. cis-[(PPh3)2Pt(mu-OH)]2(NO3)2 reacts with 1-MeCy, in DMSO or CH2Cl2, to give the mononuclear species cis-[(PPh3)2Pt{1-MeCy(-H)}(1-MeCy)](NO3) (4) containing one neutral and one NH2-deprotonated 1-MeCy molecule, coordinated to the same metal center at the N3 and N4 sites, respectively. X-ray analysis and NMR studies show an intramolecular H bond between the N4 amino group and the uncoordinated N3 atom of the two nucleobases.  相似文献   

18.
The reaction of the inside protonated form of the tricyclic amine 1,4,8,12-tetraazatricyclo[6.6.3.2(4,12)]nonadecane (1) with iron(III) affords the inside monoprotonated form of the corresponding imine 4,8,12-triaza-1-azoniatricyclo[6.6.3.2(4,12)]nonadec-1(15)-ene (2), which was isolated as the tetrabromozincate salt (2a) in a yield of 78%. The crystal structure of 2a has been solved by X-ray diffraction at T = 120 K. In the imine cation the acidic hydrogen atom and the lone pairs of the nitrogen atoms are oriented toward the inside of the cavity. The acidic hydrogen atom is bound to a nitrogen atom belonging to the triazacyclononane entity. The imine double bond is situated between the N-atom of the triazacyclononane entity and the C-atom belonging to one of the three trimethylene bridges. The imine 2 is stable in acidic solution and the inside coordinated proton is very robust in acidic solution. In basic solution the imine reacts fast to give a quantitative formation of the inside protonated form of the hemiaminal 1,4,8,12-tetraazatricyclo[6.6.3.2(4,12)]nonadecan-5-ol (3). The equilibrium constant K(im) = [3][H(+)]/[2] was determined at three different temperatures from potentiometric measurements, which gave K(im) = 1.57(1) x 10(-5) M at 25 degrees C, Delta S degrees = -83(1) J mol(-1) K(-)(1),and Delta H degrees = 2.6(3) kJ mol(-1) at I = 1.0 M (NaCl). The inside coordinated proton in 3 is labile in basic solution and the rate for NH/ND exchange was determined by (1)H NMR at three different temperatures. The reaction followed the expression k(obs) = k(ex)[OD(-)] with k(ex) = 0.0978(30) dm(3) mol(-1) s(-1) at 25 degrees C, Delta S(++) = 87(4) J mol(-1) K(-1), and Delta H(++) = 104.9(11) kJ mol(-1) at I = 1.0 M (NaCl). The exchange rate is more than 5 x 10(6) times faster than that of the parent saturated cage 1. This extreme enhancement of reactivity is explained by an intramolecular proton transfer reaction mediated by hydroxy and oxy groups flipping in and out of the cavity, which mechanistically has resemblance to the transport of ions in a biological system.  相似文献   

19.
Insight into the N7/O6 equatorial binding interactions of the antitumor active complex Rh(2)(OAc)(4)(H(2)O)(2) (OAc(-) = CH(3)CO(2)(-)) with the nucleotide 5'-GMP and the DNA fragment d(pGpG) has been obtained by one- (1D) and two-dimensional (2D) NMR spectroscopy. The lack of N7 protonation at low pH values and the significant increase in the acidity of N1-H (pK(a) approximately 5.6 as compared to 8.5 for N7 only bound platinum adducts), indicated by the pH dependence study of the H8 (1)H NMR resonance for the HT (head-to-tail) isomer of Rh(2)(OAc)(2)(5'-GMP)(2), are consistent with bidentate N7/O6 binding of the guanine. The H8 (1)H NMR resonance of the HH (head-to-head) Rh(2)(OAc)(2)(5'-GMP)(2) isomer, as well as the 5'-G and 3'-G H8 resonances of the Rh(2)(OAc)(2) [d(pGpG)] adduct exhibit pH-independent titration curves, attributable to the added effect of the 5'-phosphate group deprotonation at a pH value similar to that of the N1 site. The enhancement in the acidity of N1-H, with respect to N7 only bound metal adducts, afforded by the O6 binding of the bases to the rhodium centers, has been corroborated by monitoring the pH dependence of the purine C6 and C2 (13)C NMR resonances for Rh(2)(OAc)(2)(5'-GMP)(2) and Rh(2)(OAc)(2) [d(pGpG)]. The latter studies resulted in pK(a) values in good agreement with those derived from the pH-dependent (1)H NMR titrations of the H8 resonances. Comparison of the (13)C NMR resonances of C6 and C2 for the dirhodium adducts Rh(2)(OAc)(2)(5'-GMP)(2) and Rh(2)(OAc)(2) [d(pGpG)] with the corresponding resonances of the unbound ligands at pH 8.0, showed substantial downfield shifts of Deltadelta approximately 11.0 and 6.0 ppm, respectively. The HH arrangement of the bases in the Rh(2)(OAc)(2) [d(pGpG)] adduct is evidenced by intense H8/H8 ROE cross-peaks in the 2D ROESY NMR spectrum. The presence of the terminal 5'-phosphate group in d(pGpG) results in stabilization of one left-handed Rh(2)(OAc)(2) [d(pGpG)] HH1 L conformer, due to the steric effect of the 5'-group, favoring left canting in cisplatin-DNA adducts. Complete characterization of the Rh(2)(OAc)(2[d(pGpG)] adduct revealed notable structural features that resemble those of cis-[Pt(NH(3))(2) [d(pGpG)]]; the latter involve repuckering of the 5'-G sugar ring to C3'-endo (N-type) conformation, retention of C2'-endo (S-type) 3'-G sugar ring conformation, and anti orientation with respect to the glycosyl bonds. The superposition of the low energy Rh(2)(OAc)(2) [d(pGpG)] conformers, generated by simulated annealing calculations, with the crystal structure of cis-[Pt(NH(3))(2) [d(pGpG)]], reveals remarkable similarities between the adducts; not only are the bases almost completely destacked upon coordination to the metal in both cases, but they are favorably poised to accommodate the bidentate N7/O6 binding to the dirhodium unit. Unexpectedly, the two metal-metal bonded rhodium centers are capable of engaging in cis binding to GG intrastrand sites by establishing N7/O6 bridges that span the Rh-Rh bond.  相似文献   

20.
Hui CK  Chu BW  Zhu N  Yam VW 《Inorganic chemistry》2002,41(24):6178-6180
A novel luminescent hexanuclear platinum(II) complex, [Pt(2)(mu-dppm)(2)(C[triple bond]CC(5)H(4)N)(4)[Pt(trpy)](4)](CF(3)SO(3))(8) (trpy = 2,2':6',2'-terpyridine), was successfully synthesized by using the face-to-face dinuclear platinum(II) ethynylpyridine complex [Pt(2)(mu-dppm)(2)(C[triple bond]CC(5)H(4)N)(4)] as the building block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号