首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
An extracellular lipase was purified from the fermentation broth of Bacillus coagulans ZJU318 by CM-Sepharose chromatography, followed by Sephacryl S-200 chromatography. The lipase was purified 14.7-fold with 18% recovery and a specific activity of 141.1 U/mg. The molecular weight of the homogeneous enzyme was (32 kDa), determined by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The enzyme activity was maximum at pH 9.0 and was stable over a pH range of 7.0–10.0, and the optimum temperature for the enzyme reaction was 45°C. Little activity loss (6.2%) was observed after 1 h of incubation at 40°C. However, the stability of the lipase decreased sharply at 50 and 60°C. The enzyme activity was strongly inhibited by Ag+ and Cu2+, whereas EDTA caused no inhibition. SDS, Brij 30, and Tween-80 inhibited lipase, whereas Triton X-100 did not significantly inhibit lipase activity.  相似文献   

2.
An extracellular exoinulinase was purified from the crude extract of Aspergillus fumigatus by ammonium sulfate precipitation, followed by successive chromatographies on DEAE-Sephacel, Sephacryl S-200, concanavalin A-linked amino-activated silica, and Sepharose 6B columns. The enzyme was purified 25-fold, and the specific activity of the purified enzyme was 171 IU/mg of protein. Gel filtration chromatography revealed a molecular weight of about 200 kDa, and native polyacrylamide gel electrophoresis (PAGE) showed an electrophoretic mobility corresponding to a molecular weight of about 176.5 kDa. Sodium dodecyl sulfate-PAGE analysis revealed three closely moving bands of about 66, 62.7, and 59.4 kDa, thus indicating the heterotrimeric nature of this enzyme. The purified enzyme appeared as a single band on isoelectric focusing, with a pI of about 8.8. The enzyme activity was maximum at pH 5.5 and was stable over a pH range of 4.0–9.5, and the optimum temperature for enzyme activity was 60°C. The purified enzyme retained 35.9 and 25.8% activities after 4 h at 50 and 55°C, respectively. The inulin hydrolysis activity was completely abolished with 1 mM Hg++, whereas EDTA inhibited about 63% activity. As compared to sucrose, stachyose, and raffinose, the purified enzyme had lower K m (0.25 mM) and higher V max (333.3 IU/mg) values for inulin.  相似文献   

3.
The extracellular inulinase in the supernatant of the cell culture of the marine yeast Cryptococcus aureus G7a was purified to homogeneity with a 7.2-fold increase in specific inulinase activity compared to that in the supernatant by ultrafiltration, concentration, gel filtration chromatography (Sephadex™ G-75), and anion exchange chromatography (DEAE sepharose fast flow anion exchange). The molecular mass of the purified enzyme was estimated to be 60.0 kDa. The optimal pH and temperature of the purified enzyme were 5.0 and 50 °C, respectively. The enzyme was activated by Ca2+, K+, Na+, Fe2+, and Zn2+. However, Mg2+, Hg2+, and Ag+ acted as inhibitors in decreasing the activity of the purified inulinase. The enzyme was strongly inhibited by phenylmethanesulphonyl fluoride (PMSF), iodoacetic acid, EDTA, and 1,10-phenanthroline. The K m and V max values of the purified enzyme for inulin were 20.06 mg/ml and 0.0085 mg/min, respectively. A large amount of monosaccharides were detected after the hydrolysis of inulin with the purified inulinase, indicating the purified inulinase had a high exoinulinase activity.  相似文献   

4.
A thermostable xylanase from a newly isolated thermophilic fungus Talaromyces thermophilus was purified and characterized. The enzyme was purified to homogeneity by ammonium sulfate precipitation, diethylaminoethyl cellulose anion exchange chromatography, P-100 gel filtration, and Mono Q chromatography with a 23-fold increase in specific activity and 17.5% recovery. The molecular weight of the xylanase was estimated to be 25kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and gel filtration. The enzyme was highly active over a wide range of pH from 4.0 to 10.0. The relative activities at pH5.0, 9.0, and 10.0 were about 80%, 85.0%, and 60% of that at pH7.5, respectively. The optimum temperature of the purified enzyme was 75°C. The enzyme showed high thermal stability at 50°C (7days) and the half-life of the xylanase at 100°C was 60min. The enzyme was free from cellulase activity. K m and V max values at 50°C of the purified enzyme for birchwood xylan were 22.51mg/ml and 1.235μmol min−1 mg−1, respectively. The enzyme was activated by Ag+, Co2+, and Cu2+; on the other hand, Hg2+, Ba2+, and Mn2+ inhibited the enzyme. The present study is among the first works to examine and describe a secreted, cellulase-free, and highly thermostable xylanase from the T. thermophilus fungus whose application as a pre-bleaching aid is of apparent importance for pulp and paper industries.  相似文献   

5.
An extracellular thermostable α-galactosidase producing Aspergillus terreus GR strain was isolated from soil sample using guar gum as sole source of carbon. It was purified to apparent homogeneity by acetone precipitation, gel filtration followed by DEAE-Sephacel chromatographic step. The purified enzyme showed a single band after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the purified enzyme after SDS-PAGE was 108 kDa. The enzyme showed optimum pH and temperature of 5.0 and 65 °C, respectively, for artificial substrate pNPαGal. α-Galactosidase from A. terreus GR is found to be thermostable, as it was not inactivated after heating at 65 °C for 40 min. The K m for pNPαGal, oNPαGal, raffinose, and stachyose are 0.1, 0.28, 0.42, and 0.33 mM, respectively. Inhibitors such as 1,10-phenanthroline, phenylmethylsulfonyl fluoride, ethylenediaminetetraacetic acid, mercaptoethanol, and urea have no effect, whereas N-bromosuccinamide inhibited enzyme activity by 100%. Among metal ions tested, Mg2+, Ni2+, Ca2+, Co2+, and Mn2+ had no effect on enzyme activity, but Ag+, Hg2+, and Cu2+ have inhibited complete activity.  相似文献   

6.
Polygalacturonase (PGI) from Aspergillus niger NRRL3 was purified about 12.0-fold from the cell-free broth using diethylaminoethyl-Sepharose and Sephacryl S-200 columns. The molecular weight of the PGI was 32,000 Da as estimated by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PGI had an isoelectric point of 7.6 and an optimum pH of 5.0. PGI was active on polygalacturonic acid and esterified pectins, but the activity on pectin decreased with an increase in degree of esterification. PGI had higher affinity (low Km) and turnover number (Vmax/Km and Kcat/Km) toward polygalacturonic acid. PGI was found to have a temperature optimum at 40 degrees C and was approximately stable up to 30 degrees C. All the examined metal cations had partial inhibitory effects on PGI, while Mn+2 at 5 mM caused a complete inhibition for the enzyme. Comparison of viscosity reduction rates with release of reducing sugars indicated that the enzyme from A. niger is exoacting. The storage stability study of PGI showed that the enzyme in powder form retained 56% of its activity after 9 months of storage at 4 degrees C. The above properties of PGI may be suitable for food processing.  相似文献   

7.
Pseudomonas fluorescens (strain BTP9) was found to have at least two NAD(P)-dependent vanillin dehydrogenases: one is induced by vanillin, and the other is constitutive. The constitutive enzyme was purified by ammonium sulfate fractionation, gel-filtration, and Q-Sepharose chromatography. The subunit Mr value was 55,000, determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The native M r value estimated by gelfiltration chromatography gave a value of 210,000. The enzyme made use of NAD+ less effectively than NADP+. Benzaldehyde, 4-hydroxybenzaldehyde, hexanal, and acetaldehyde were not oxidized at detectable rates in the presence of NAD+ or NADP+. The ultraviolet absorption spectrum indicated that there is no cofactor or prosthetic group bound. The vanillin oxidation reaction was essentially irreversible. The pH optimum was 9.5 and the pI of the enzyme was 4.9. Enzyme activity was not affected when assayed in the presence of salts, except FeCl2. The enzyme was inhibited by the thiol-blocking reagents 4-chloromercuribenzoate and N-ethylmaleimide. NAD+ and NADP+ protected the enzyme against such a type of inhibition along with vanillin to a lesser extent. The enzyme exhibited esterase activity with 4-nitrophenyl acetate as substrate and was activated by low concentrations of NAD+ or NADP+. We compared the properties of the enzyme with those of some well-characterized microbial benzaldehyde dehydrogenases.  相似文献   

8.
Cyclodextrin glucanotransferase, produced by Bacillus megaterium, was characterized, and the biochemical properties of the purified enzyme were determined. The substrate specificity of the enzyme was tested with different α-1,4-glucans. Cyclodextrin glucanotransferase displayed maximum activity in the case of soluble starch, with a K m value of 3.4 g/L. The optimal pH and temperature values for the cyclization reaction were 7.2 and 60 °C, respectively. The enzyme was stable at pH 6.0–10.5 and 30 °C. The enzyme activity was activated by Sr2+, Mg2+, Co2+, Mn2+, and Cu2+, and it was inhibited by Zn2+and Ag+. The molecular mass of cyclodextrin glucanotransferase was established to be 73,400 Da by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, 68,200 Da by gel chromatography, and 75,000 Da by mass spectrometry. The monomer form of the enzyme was confirmed by the analysis of the N-terminal amino acid sequence. Cyclodextrin glucanotransferase formed all three types of cyclodextrins, but the predominant product was β-cyclodextrin.  相似文献   

9.
A commercialRhizomucor miehei lipase was purified by ammonium sulfate precipitation. Phenyl Sepharose 6 Fast Row hydrophobic interaction chromatography, and DEAE Sepharose Fast Flow anion-exchange chromatography. The recovery of lipase activity was 32% with a 42-fold purification. The molecular size of the purified enzyme was 31,600 Dalton and the pI 3.8. The enzyme was stable for at least 24 h within a pH range of 7.0-10.0, and 96.8% of the enzyme activity remained when kept at 30‡C for 24 h. Further, about 10–30% of the lipase activity was inhibited by K+, Li+, Ni+, Co2+, Zn2+, Mg2+, Sn2+, Cu2+, Ba2+, Ca2+, and Fe2+ ions and by SDS, but EDTA had no effect. Under the experimental conditions, the optimum temperature for the hydrolysis of olive oil was 50‡C (pH 8.0), and for the synthesis of 1-butyl oleate, 37‡C. It was concluded that hydrolytic activity of lipase alone is not a sufficient criterion for its synthetic potential. The optimal molar ratio of oleic acid and 1-butanol was 2:1 for 1-butyl oleate synthesis. The 1-butyl oleate yield was unaffected by purification of the enzyme after 12 h.  相似文献   

10.
A strain ofRhodococcus equi SHB-121 forming 3-cyanopyridine hydratase was screened from nitrile-polluted soil. The optimum conditions for the formation of 3-cyanopyridine hydratase by the strain SHB-121 have been studied. Under the optimum conditions, the specific activity of the enzyme reached 5.32 U/mg of dry cell, 95 times higher than that cultured in screening medium. In addition, the activity of coexistent amidase was very low. 3-Cyanopyridine hydratase was purified from methylacrylamide-induced cells ofRh. equi SHB-121 by procedures including ultrasonic oscillation, ammonium sulfate precipitation, and column chromatographies on DEAE-cellulose DE52, hydroxyapatite, and Sephadex G-25. The overall purification was 31-fold. The molecular weight of the enzyme was about 30 kDA by SDS-PAGE. The pI value was 4.1. The transition temperature and pH were 7.0°C and 6.0, respectively, resulting from the differential spectra. The optimum pH and temperature for the enzyme reaction were 8.0 and 30°C. The enzyme activity was strongly inhibited by Ag+, Hg2+, Cu2+, and NH4 +, whereas it was enhanced by Fe3+ slightly. The enzyme catalyzed the hydration of 3-cyanopyridine to nicotinamide, and itsKm value was 0.1 mol/L. Uncompetitive inhibitor sodium cyanide has a K, value of 5 mmol/L.  相似文献   

11.
A new thermophilic bacterial strain identified as Bacillus cohnii US147 was isolated from the southern Tunisian soil. The identification was based on physiological tests and molecular techniques related to the 16S ribosomal ribonucleic acid. The isolated strain produced amylase, which was purified. This amylase had an apparent molecular mass of 30 kDa as estimated by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. Amylase US147 showed K m and V max values of 0.7 mg/ml and 2.2 U/ml, respectively, with starch as the substrate. The enzyme was active in acid and basic pH and had a maximal activity on starch at pH 9 and 70 °C. The enzyme was stable at pH 9 for 72 h and retained half of its activity after incubation at 70 °C for 150 min. A partially inhibition (15%, 25%, 23%, 20%, and 22%) was obtained with 1 mM SDS, 1 mM NaBO3, 1 mM H2O2, 1 mM Zn+2, and 5 mM ethylenediamine tetraacetic acid (EDTA), respectively. The amylase recovered its original activity by the addition of 10 mM Ca 2+ to the 5 mM EDTA. These properties indicated a possible use of this amylase in starch saccharification, in detergent, and in other industrial applications.  相似文献   

12.
N-Acetyl-neuraminic acid cytidylyltransferase (EC 2.7.7.43) (CMP-Neu5Ac synthetase), which catalyzes the formation of cytidine-5′-monophospho-N-acetyl-neuraminic acid (CMP-Neu5Ac) from cytidine-5′-triphosphate (CTP) and N-acetyl-neuraminic acid (Neu5Ac), was purified from rat brains aged 8-9 days, which presented the highest specific activity, and partially characterized. Partial protein fractionation in the crude extract was achieved by using 40-60% ammonium sulphate. Subsequently, CMP-Neu5Ac synthetase was purified by column chromatography on Sephacryl S-200 (gel filtration), Yellow-86-Agarose (affinity) and Phenyl-Sepharose (hydrophobic affinity). The pure enzyme had a specific activity of 3.6555 U/mg of protein and was purified 1662-fold, with an 18% yield. The purified CMP-Neu5Ac synthetase had a molecular weight of about 46 ± 1 kDa. Its purity was confirmed by sodium dodecyl sulphate and polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance liquid chromatography (HPLC). The active enzyme chromatographed on a gel filtration column at 190 kDa, suggesting it exists in its native form as a tetramer. The greatest activity of enzyme was observed a temperature of 40 °C for a period of 45 min of incubation, revealing a certain thermal stability. The enzyme was found to remain stable in the pH range 8.5-9.5 at 40 °C, specifically at pH 9.0 for a 45 min incubation period. The enzyme was blocked by thiol-modifying reagents and such heavy metal cations as Mn2+, Cu2+, Sn2+, Co2+, Zn2+ and Hg2+, but was not inhibited by thiol-containing reagents like reduced glutathione (GSH), mercaptoethanol and cysteine. Finally, in the presence of 0.01 M of dithiothreitol (DTT) or 0.06 M of NaF, the enzyme showed activity losses of approximately 20 and 17%, respectively.  相似文献   

13.
Five hundred ninety-seven bacterial isolates from Turkish hot spring water sources were screened for their ability to produce extracellular α-amylase. Among them, a high enzyme-producing Bacillus subtilis isolate, A28, was selected, and its α-amylase gene was cloned and expressed in Escherichia coli by a ligase-independent method. α-Amylase from the recombinant strain was purified to homogeneity by Q-Sepharose anion exchange and Sephacryl S-100 gel filtration chromatographies. The final yield of the enzyme was about 22.5 % of the initial activity, with a 16.4-fold increase in specific activity compared with the culture lysate. The optimum temperature and pH of the enzyme were 70 °C and 6.0, respectively. The enzyme was highly active at acidic-neutral pH range of 4.5–7.0. The amy28 α-amylase retained 100 % of its activity after incubation at 50 °C for 90 min. Co+2, Cu2+, Fe2+, Fe3+, Ni+2, and Zn+2 caused significant inhibition in enzyme activity, which was not affected by Na+, Mg2+, Li+, and Ba2+. The activity was inhibited about 70 % upon treatment of the enzyme with 10 mM ethylenediaminetetraacetic acid. However, Ca2+ ions known as high temperature stabilizer for other amylases did not stimulate the activity of the enzyme. Due to pH stability and thermostability of the recombinant amylase, this enzyme may be suitable in starch processing, brewing, and food industries.  相似文献   

14.
Chitinase was purified from the culture medium of Bacillus licheniformis SK-1 by colloidal chitin affinity adsorption followed by diethylamino ethanol-cellulose column chromatography. The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of chitinase 72 (Chi72) were 72 kDa and 4.62 (Chi72) kDa, respectively. The purified chitinase revealed two activity optima at pH 6 and 8 when colloidal chitin was used as substrate. The enzyme exhibited activity in broad temperature range, from 40 to 70°C, with optimum at 55°C. It was stable for 2 h at temperatures below 60°C and stable over a broad pH range of 4.0–9.0 for 24 h. The apparent K m and V max of Chi72 for colloidal chitin were 0.23 mg ml−1 and 7.03 U/mg, respectively. The chitinase activity was high on colloidal chitin, regenerated chitin, partially N-acetylated chitin, and chitosan. N-bromosuccinamide completely inhibited the enzyme activity. This enzyme should be a good candidate for applications in the recycling of chitin waste.  相似文献   

15.
The gene encoding xylose isomerase (xylA) was cloned fromThermus flavus AT62 and the DNA sequence was determined. ThexylA gene encodes the enzyme xylose isomerase (XI orxylA) consisting of 387 amino acids (calculated Mr of 44,941). Also, there was a partial xylulose kinase gene that was 4 bp overlapped in the end of XI gene. The XI gene was stably expressed inE. coli under the control oftac promoter. XI produced inE. coli was simply purified by heat treatment at 90°C for 10 min and column chromatography of DEAE-Sephacel. The Mr of the purified enzyme was estimated to be 45 kDa on SDS-polyacrylamide gel electrophoresis. However, Mr of the cloned XI was 185 kDa on native condition, indicating that the XI consists of homomeric tetramer. The enzyme has an optimum temperature at 90°C. Thermostability tests revealed that half life at 85°C was 2 mo and 2 h at 95°C. The optimum pH is around 7.0, close to where by-product formation is minimal. The isomerization yield of the cloned XI was about 55% from glucose, indicating that the yield is higher than those of reported enzymes. The Km values for various sugar substrates were calculated as 106 mM for glucose. Divalent cations such as Mn2+, Co2+, and Mg2+ are required for the enzyme activity and 100 mM EDTA completely inhibited the enzyme activity.  相似文献   

16.
Four myrosinase (β-thioglucosidase EC. 3.2.3.1) and seven disaccharase (β-fructofuranosidase, EC. 3.2.1.26) isoenzymes were isolated from turnip leaves. The most active enzymes were isolated in pure form. Myrosinase and disaccharase mol wt was 62.0 × 103 and 69.5 × 103 dalton, respectively, on the basis of gel filtration on Sephadex G-200. Myrosinase pH profile showed high activity between pH 5 and 7 with the optimum at pH 5.5. The purified enzyme was heat-stable for 60 min at 30°C with only loss of 24% of activity. Its activity is strongly inhibited (100%) by Pb2+, Ba2+, Cu2+ and Ca2+ ions, and activated (70%) by EDTA at 0.04M. The pure enzyme failed to hydrolyze amylose, glycogen, lactose, maltose, and sucrose. TheK m andV max values of myrosinase using sinigrin as specific substrate was 0.045 mM and 2.5 U, respectively. The maximal activity of disaccharase enzyme was obtained at pH 4–5 and 35–37°C. The enzyme was heat-stable at 30°C for 30 min with only 10% loss of its activity. Its activity is strongly activated (70–240%) by Ca2+, Ba2+, Cu2+, and EDTA at 0.01M. The enzyme activity is specific to the disaccharide sucrose and failed to hydrolyze other disaccharides (maltose and lactose). TheK m andV max of disaccharase were 0.123 mM and 3.33 U, respectively.  相似文献   

17.
For the first time, a polygalacturonase from the culture broth of Tetracoccosporium sp. was isolated and incubated at 30°C in an orbital shaker at 160 rpm for 48h. The enzyme was purified by ammonium sulfate precipitation and two-step ion-exchange chromatography and had an apparent molecular mass of 36 kDa, as shown by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Its optimum activity was at pH 4.3 and 40°C, and the K m and V max values of this enzyme (for polygalacturonic acid) were 3.23 mg/mL and 0.15 μmol/min, respectively. Ag+, Co2+, EDTA, Tween-20, Tween-80, and Triton X-100 stimulated polygalacturonase activity whereas Al3+, Ba2+, Ca2+, Fe2+, Fe3+, Ni2+, Mg2+, Mn2+, and SDS inhibited it. In addition, iodoacetamide and iodoacetic acid did not inhibit enzyme activity at a concentration of 1 mM, indicating that cysteine residues are not part of the catalytic site of polygalacturonase. We studied the kinetic properties and thermal inactivation of polygalacturonase. This enzyme exhibited a t 1/2 of 63 min at 60°C and its specific activity, turnover number, and catalytic efficiency were 6.17 U/mg, 113.64 min−1, and 35.18 mL/(min·mg), respectively. The activation energy (ΔE #) for heat inactivation was 5.341 kJ/mol, and the thermodynamic activation parameters ΔG #, ΔH #, and ΔS # were also calculated, revealing a potential application for the industry.  相似文献   

18.

Background

Previous studies have demonstrated that members of Trichoderma are able to generate appreciable amount of extracellular amylase and glucoamylase on soluble potato starch. In this study the α-amylase was purified and characterized from Trichoderma pseudokoningii grown on orange peel under solid state fermentation (SSF).

Results

Five α-amylases A1-A5 from Trichodrma pseudokoningii were separated on DEAE-Sepharose column. The homogeneity of α-amylase A4 was detected after chromatography on Sephacryl S-200. α-Amylase A4 had molecular weight of 30 kDa by Sephacryl S-200 and SDS-PAGE. The enzyme had a broad pH optimum ranged from 4.5 to 8.5. The optimum temperature of A4 was 50 °C with high retention of its activity from 30 to 80 °C. The thermal stability of A4 was detected up to 50 °C and the enzyme was highly stable till 80 °C after 1 h incubation. All substrate analogues tested had amylase activity toward A4 ranged from 12 to 100% of its initial activity. The Km and Vmax values of A4 were 4 mg starch/ml and 0.74 μmol reducing sugar, respectively. The most of metals tested caused moderate inhibitory effect, except of Ca2+ and Mg2+ enhanced the activity. Hg2+ and Cd+?2 strongly inhibited the activity of A4. EDTA as metal chelator caused strong inhibitory effect.

Conclusions

The properties of the purified α-amylase A4 from T. pseudokoningii meet the prerequisites needed for several applications.
  相似文献   

19.
Alternaria sp. ND-16, a bacterium isolated from soil sample, was identified as a strain of Alternaria mali based on the morphology and comparison of internal transcribed spacer rDNA gene sequence studies. Furthermore, it is demonstrated that this strain has xylanase activity, and the activity can be optimized under suitable growing conditions where wheat bran and urea are the primary sources of carbon and nitrogen. Partially purified xylanase from Alternaria sp. ND-16 is shown to have an optimal pH of 6.0 and optimal temperature of 50 °C, making this enzyme potentially suitable for industrial applications. It is also demonstrated that Na+ and Mn2+ show strong inhibition of the xylanase while K+, Li+, Fe2+, Cu2+, and Zn2+ have no significant effect on the activity.  相似文献   

20.
Bacillus sp. HR-08 screened from soil samples of Iran, is capable of producing proteolytic enzymes. 16S rDNA analysis showed that this strain is closely related to Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus, Bacillus mojavensis, and Bacillus atrophaeus. The zymogram analysis of the crude extract revealed the presence of five extracellular proteases. One of the proteases was purified in three steps procedure involving ammonium sulfate precipitation, DEAE-Sepharose ionic exchange and Sephacryl S-200 gel filtration chromatography. The molecular mass of the enzyme on SDS-PAGE was estimated to be 29 kDa. The protease exhibited maximum activity at pH 10.0 and 60 °C and was inhibited by PMSF but it was not affected by cysteine inhibitors, suggesting that the enzyme is a serine alkaline protease. Irreversible thermoinactivation of enzyme was examined at 50, 60, and 70 °C in the presence of 10 mM CaCl2. Results showed that the protease activity retains more than 80% and 50% of its initial activity after incubation for 30 min at 60 and 70 °C, respectively. This enzyme had good stability in the presence of H2O2, nonionic surfactant, and local detergents and its activity was enhanced in the presence of 20% of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF) and isopropanol. The enzyme retained more than 90% of its initial activity after pre-incubation 1 h at room temperature in the presence of 20% of these solvents. Also, activation can be seen for the enzyme at high concentration (50%, v/v) of DMF and DMSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号