首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a SIS mixer developed for 200 – 250 GHz band receivers of Plateau de Bure Interferometer. We demonstrate the minimum DSB receiver noise of 20 K at 220 GHz. The average receiver noise of 25 K is possible in 200 – 250 GHz range. The receiver conversion gain and output noise instability of 10−4 on the time scale of 1 minute is comparable with the Shottky receivers performance. The minimum measured SIS mixer noise of about 10 K is close to the quantum limit. The waveguide SIS mixer with a single backshort has two junction array with inductively tuned junctions. The Nb/Al Oxide/Nb SIS junctions are 2.24 μm2 each with the Josephson critical current density of 3.2 KA/cm2. The thermal properties of the SIS mixer are studied. The mixer band of the low noise operation is in a good agreement with the design requirements.  相似文献   

2.
We have developed and tested a submillimeter waveguide SIS mixer with NbN-MgO-NbN quasiparticle tunnel junctions. The two junction array is integrated in a full NbN printed circuit. The NbN film critical temperature is 15 K and the junction gap voltage is 5 mV. The size of the junctions is 1.4 × 1.4 µm and Josephson critical current density is about 1.5 KA/cm2 resulting in junction RNC product about 40. The inductive tuning circuit in NbN is integrated with each junction in two junction array. A single non contacting backshort was tuned at each frequency in the mixer block.At 306 GHz the minimum DSB receiver noise temperature is as low as 230 K. The sources of the receiver noise and of the limits of the NbN SIS submillimeter mixer improvement are discussed.  相似文献   

3.
Several SIS quasiparticle mixers have been designed and tested for the frequency range from 80 to 115 GHz. The sliding backshort is the only adjustable RF tuning element. The RF filter reactance is used as a fixed RF matching element. A mixer which uses a single 2×2 m2 Pb-alloy junction in a quarter-height waveguide mount has a coupled conversion gain of GM(DSB)=2.6±0.5 dB with an associated noise temperature of TM(DSB)=16.4±1.8 K at the best DSB operation point. The receiver noise temperature TR(DSB) is 27.5±0.8 K for the mixer test apparatus. This mixer provides a SSB receiver noise temperature below 50 K over the frequency range from 91 to 96 GHz, the minimum being TR(SSB)=44±4 K. Another mixer with an array of five 5×5 m2 junctions in series in a full-height wave-guide mount has much lower noise temperature TM(DSB)=6.6±1.6 K, but less gain GM(DSB)=–5.1±0.5 dB.Contribution of the U.S. Government, not subject to copyright  相似文献   

4.
The integration of many receiver units into a receiver array is a common method of improvement of imaging systems. This approach, well known in the mm band for Schottky mixer arrays, has not so far been developed for Superconductor - Insulator - Superconductor (SIS) junction mixers, which give the best sensitivity in the short mm wave range and in the submm range.We demonstrate for the first time a practical low noise multibeam receiver module using SIS mixer technology. The basis for the integration of several SIS mixers with a common local oscillator source is given by the saturation of the SIS receiver noise dependence upon local oscillator power. The module comprises three identical SIS mixers integrated with a common local oscillator, coupled through a three branch waveguide directional coupler. The multibeam module has been developed for a focal plane array receiver of the 30 meter radio telescope of the Institut de Radioastronomie Millimétrique (IRAM).  相似文献   

5.
A fitting method is presented here for the accurate characterization of the IF noise contribution of a sub-millimeter SIS receiver. By fitting the mixer's IF output power response and junction's IV curve of an SIS mixer without LO pumping, we can obtain the IF noise contribution, the physical temperature of the isolator connected just behind the SIS mixer, the output mismatching of the mixer, and the total gain of the IF chain. Differing from a conventional method, which only uses the normal-state (linear) branch of the junction's IV curve, the method proposed here also includes the nonlinear portion around the gap voltage. The dynamic resistance in this portion is varied dramatically, providing us a good probe to characterize the output mismatching of the mixer, as well as other parameters.  相似文献   

6.
In this work we present for the first time a low-noise submillimeter receiver with a mixer using Superconductor-Insulator-Normal metal-Superconductor (SINS) junctions. Junctions containing a normal metal layer may be free of the Josephson current and of the related perturbations of mixer operation specific for the standard SIS mixers. This SINS mixer quality is important for the application in the multibeam submillimeter receiver. The SINS mixer stability of operation and independence on the magnetic field have been confirmed in our experiment. Minimum SINS receiver noise in the 290 – 330 GHz band is about 135 K when the junction RNC is about 30. Noise, conversion gain and thermal properties of the SINS mixer have been studied and compared with the SIS mixers. The limit of SINS mixer operation improvement is discussed at the end of the work.  相似文献   

7.
We have developed a 3 mm band receiver for SRAO. The receiver employs an Nb-based SIS junction in the mixer and operates at 85–115 GHz with single polarization. The receiver noise temperature is 40–50 K in DSB. It is equipped with an MPI-type filter for single-side band observations. We present the design, construction, and test results for individual components of the receiver optics, heterodyne system, and cryogenics. The receiver has been installed on the 6 m SRAO telescope and tested toward astronomical sources. The beam-measurement experiment suggests that the edge taper is smaller than the designed 12 dB.  相似文献   

8.
We report on heterodyne measurements at submillimeter wavelengths using a receiver with a Superconductor-Insulator-Superconductor (SIS) mixer device and a Microwave Monolithic Integrated Circuit (MMIC) cryogenic low noise amplifier (LNA) module integrated into the same block. The mixer characterization presented in this work demonstrates the feasibility of operating a MMIC LNA in close proximity to the SIS device without penalty in mixer performance due to heating effects. Verification of this functionality is crucial for the ongoing development of SuperCam, a 64-pixel focal plane array receiver consisting of eight, 1 × 8 integrated mixer/LNA modules. The test setup included a mixer block modified to accept a MMIC amplifier. Our tests show that the LNA can be operated over a broad range of Vdrain voltages from 0.40–1.40 V, corresponding to dissipative powers of 2.6–29 mW. We observe no significant effect on the measured uncorrected receiver noise temperatures in the 345 GHz band.  相似文献   

9.
We developed a low noise dual channel receiver with 100GHz and 150GHz band, which is used to make the simultaneous observation with two bands. The SIS mixers are used in both bands. The constructed dewar for the receiver has a performance with a vacuum of 10–8torr and a temperature of 4.2K. The receiver noise temperature is 50K(DSB) for 100GHz band and 80K(DSB) for 150GHz band, respectively. In order to achieve the simultaneous observations, the quasioptical system is precisely designed, and also evaluated by measurements in the laboratory. The relative pointing offset between two bands is 3. We have observed the various sources using the receiver since October 1998.  相似文献   

10.
We apply the quantum formulation of heterodyne mixer theory to SIS heterojunctions (junctions between dissimilar superconductors). Conversion gain is predicted over a wide range of mm-wave frequencies in the 3-port Y-mixer model by exploiting the naturally occurring region of negative conductance in the DC I-V characteristic. In the signal frequency range 50–250 GHz this region persists in the pumpedjunction I–V characteristic for local oscillator power <1 nW and leads to a negative conductance at the mixer's IF port.  相似文献   

11.
宋志军  吕昭征  董全  冯军雅  姬忠庆  金勇  吕力 《物理学报》2019,68(7):70702-070702
介观体系输运过程中载流子的离散性导致了散粒噪声.通过测量散粒噪声可以得到传统的基于时间平均值的电导测量无法得到的随时间涨落信息,因而作为一种重要手段在极低温量子输运研究中得到了一定的应用.极低温环境下的噪声测量是一种难度很大的极端条件下的微弱信号测量,通常需要在低温端安装前置放大器并且尽量靠近待测器件以提高测量信噪比和带宽,因此对放大器的噪声水平和功耗都有严格的要求.提出了在稀释制冷机内搭建的散粒噪声测量系统,以及利用此套系统得到了在mK温区超导隧道结散粒噪声的测量结果.自行研制的高电子迁移率晶体管低温前置放大器采用整体封装,便于安装在商用干式稀释制冷机的4 K温区,本底电压噪声为0.25 nV/√Hz,功耗仅为0.754 mW.通过对隧道结进行散粒噪声测量,得到的Fano因子和理论计算吻合.  相似文献   

12.
We have developed a niobium titanium nitride (NbTiN) based superconductor-insulator-superconductor (SIS) receiver to cover the 350 micron atmospheric window. This frequency band lies entirely above the energy gap of niobium (700 GHz), a commonly used SIS superconductor. The instrument uses an open structure twin-slot SIS mixer that consists of two Nb/AlN/NbTiN tunnel junctions, NbTiN thin-film microstrip tuning elements, and a NbTiN ground plane. The optical configuration is very similar to the 850 GHz waveguide receiver that was installed at the Caltech Submillimeter Observatory (CSO) in 1997. To minimize front-end loss, we employed reflecting optics and a cooled beamsplitter at 4 K. The instrument has an uncorrected receiver noise temperature of 205K DSB at 800 GHz and 410K DSB at 900 GHz. The degradation in receiver sensitivity with frequency is primarily due to an increase in the mixer conversion loss, which is attributed to the mismatch between the SIS junction and the twin-slot antenna impedance. The overall system performance has been confirmed through its use at the telescope to detect a wealth of new spectroscopic lines.  相似文献   

13.
本文介绍了低温低噪声放大器的应用情况,以及确保它正常工作所需的结构设计方面的一些问题。  相似文献   

14.
王兰若  钟源  李劲劲  屈继峰  钟青  曹文会  王雪深  周志强  付凯  石勇 《物理学报》2018,67(10):108501-108501
量子噪声温度计系统可通过比较导体中电子运动的热噪声和量子电压参考噪声精密测量玻尔兹曼常数,其中量子电压噪声源所合成的量子电压参考噪声由一组超导约瑟夫森结阵产生.本文详细介绍了基于Nb/Nb_xSi_(1-x)/Nb约瑟夫森结的量子电压噪声源芯片的设计、制备及测试;采用脉冲驱动模式,合成了具有量子精度的100 kHz交流量子电压信号.结果表明:本文所研制的噪声温度计核心芯片已具备了合成交流电压的功能,可为后续玻尔兹曼常数精密定值、重新定义及复现热力学温度研究提供核心器件.  相似文献   

15.
We designed and fabricated new structure lasers, the high-power AlGaAs/GaAs remote junction (RJ) single quantum well (SQW) semiconductor lasers whose p–n junction was separated from the active layer. The RJ lasers showed marked reduction of threshold current during early aging period. This reduction was accompanied by a decrease of non-radiative recombination centers in the active layer. For the RJ SQW lasers, the relation between the low-frequency electrical noise and the lifetime of devices is different from the conventional SQW lasers.  相似文献   

16.
There currently exist a number of commercial tools which may be used to develop strategic noise maps in an effort to satisfy the requirements of EU Directive 2002/49/EC. However, these tools may not be readily available to local authorities with limited resources. This paper investigates the possibility of developing a simplified alternative to using detailed commercial software for the creation of strategic noise maps. In-house noise prediction software was used to calculate a noise map of Dublin city centre and results were compared to those of commercial standard software. The in-house software tool was then used to assess the impact of various source-dependent action plans in a time-efficient and practical manner. Measurements were also carried out at various locations throughout the test area, which were then used to investigate the accuracy of predictions. Finally, a hybrid approach to developing a strategic noise map by integrating measurements taken on-site with predictions was developed. This approach was applied to the test area and yielded a refined noise map that presented noise levels which were more reflective of the measured levels recorded on-site. This demonstrated that the method could be used to determine noise levels that would be representative of the acoustic environment experienced on-site.  相似文献   

17.
We accurately measured the noise temperature and conversion loss of a cryogenically cooled Schottky diode operating near 800 GHz, using the UCB/MPE Submillimeter Receiver at the James Clerk Maxwell Telescope. The receiver temperature was in the range of the best we now routinely measure, 3150 K (DSB). Without correcting for optical loss or IF mismatch, the raw measurements set upper limits ofT M=2850 K andL M=9.1 dB (DSB), constant over at least a 1 GHz IF band centered at 6.4 GHz with an LO frequency of 803 GHz. Correction for estimated optical coupling and mismatch effects yieldsT M=1600 K andL M=5.5 dB (DSB) for the mixer diode itself. These values indicate that our receiver noise temperature is dominated by the corner cube antenna's optical efficiency and by mixer noise, but not by conversion loss or IF mismatch. The small fractional IF bandwidth, measured mixer IF band flatness from 2 to 8 GHz, and similarly good receiver temperatures at other IF frequencies imply that these values are representative over a range of frequencies near 800 GHz.  相似文献   

18.
Prakash Gupta 《Optik》2010,121(16):1507-1510
The possibility of observing higher order squeezing in different optical processes, such as six-wave mixing and four-wave mixing, has been studied and it is shown that amplitude squared squeezing appears in all these cases. It is also shown that the minimum total noise (Tmin) of a higher order squeezed state, which is a measure of the total fluctuations in the field amplitude, always increases with the increase in depth of nonclassicality associated with higher order squeezing. Thus we can use Tmin as an indirect measure of higher order squeezing.  相似文献   

19.
曹帅  方卯发  郑小娟 《中国物理》2007,16(4):915-918
It has recently been realized that quantum strategies have a great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise, resulting in decoherence. In this paper, we investigate the effect of quantum noise on a multiplayer quantum game with a certain strategic space, with all players affected by the same quantum noise at the same time. Our results show that in a maximally entangled state, a special Nash equilibrium appears in the range of It has recently been realized that quantum strategies have a great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise, resulting in decoherence. In this paper, we investigate the effect of quantum noise on a multiplayer quantum game with a certain strategic space, with all players affected by the same quantum noise at the same time. Our results show that in a maximally entangled state, a special Nash equilibrium appears in the range of 0≤p≤0.622 (p is the quantum noise parameter), and then disappears in the range of 0.622 〈 p≤ 1. Increasing the amount of quantum noise leads to the reduction of the quantum player's payoff.  相似文献   

20.
We have demostrated the use of cryogenically-cooled variable-temperature loads for accurate noise measurements of low-noise cooled amplifiers and mixers in the microwave and millimeter wave range. The input noise temperature of the amplifier or mixer can be measured with an accuracy of ±1 K or better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号