首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given , we consider the following problem: find , such that where or 3, and in . We prove and error bounds for the standard continuous piecewise linear Galerkin finite element approximation with a (weakly) acute triangulation. Our bounds are nearly optimal. In addition, for d = 1 and 2 and we analyze a more practical scheme involving numerical integration on the nonlinear term. We obtain nearly optimal and error bounds for d = 1. For this case we also present some numerical results. Received July 4, 1996 / Revised version received December 18, 1997  相似文献   

2.
Mixed finite element approximation of a degenerate elliptic problem   总被引:3,自引:0,他引:3  
Summary. We present a mixed finite element approximation of an elliptic problem with degenerate coefficients, arising in the study of the electromagnetic field in a resonant structure with cylindrical symmetry. Optimal error bounds are derived. Received May 4, 1994 / Revised version received September 27, 1994  相似文献   

3.
Summary. We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness , and introduce appropriate scalings for the physical parameters so that these problems attain a limit when . We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method. Received February 4, 1998 / Revised version received May 26, 1999 / Published online June 21, 2000  相似文献   

4.
Summary. We consider the bilinear finite element approximation of smooth solutions to a simple parameter dependent elliptic model problem, the problem of highly anisotropic heat conduction. We show that under favorable circumstances that depend on both the finite element mesh and on the type of boundary conditions, the effect of parametric locking of the standard FEM can be reduced by a simple variational crime. In our analysis we split the error in two orthogonal components, the approximation error and the consistency error, and obtain different bounds for these separate components. Also some numerical results are shown. Received September 6, 1999 / Revised version received March 28, 2000 / Published online April 5, 2001  相似文献   

5.
Finite volume element methods for non-definite problems   总被引:8,自引:0,他引:8  
Summary. The error estimates for finite volume element method applied to 2 and 3-D non-definite problems are derived. A simple upwind scheme is proven to be unconditionally stable and first order accurate. Received August 27, 1997 / Revised version received May 12, 1998  相似文献   

6.
Summary. A mixed field-based variational formulation for the solution of threedimensional magnetostatic problems is presented and analyzed. This method is based upon the minimization of a functional related to the error in the constitutive magnetic relationship, while constraints represented by Maxwell's equations are imposed by means of Lagrange multipliers. In this way, both the magnetic field and the magnetic induction field can be approximated by using the most appropriate family of vector finite elements, and boundary conditions can be imposed in a natural way. Moreover, this method is more suitable than classical approaches for the approximation of problems featuring strong discontinuities of the magnetic permeability, as is usually the case. A finite element discretization involving face and edge elements is also proposed, performing stability analysis and giving error estimates. Received January 23, 1998 / Revised version received July 23, 1998 / Published online September 24, 1999  相似文献   

7.
Summary. The aim of this paper is to give a new method for the numerical approximation of the biharmonic problem. This method is based on the mixed method given by Ciarlet-Raviart and have the same numerical properties of the Glowinski-Pironneau method. The error estimate associated to these methods are of order O(h) for k The algorithm proposed in this paper converges even for k, without any regularity condition on or . We have an error estimate of order O(h) in case of regularity. Received February 5, 1999 / Revised version received February 23, 2000 / Published online May 4, 2001  相似文献   

8.
Summary. We consider a second-order elliptic equation with discontinuous or anisotropic coefficients in a bounded two- or three dimensional domain, and its finite-element discretization. The aim of this paper is to prove some a priori and a posteriori error estimates in an appropriate norm, which are independent of the variation of the coefficients. Received February 5, 1999 / Published online March 16, 2000  相似文献   

9.
Summary. An unusual stabilized finite element is presented and analyzed herein for a generalized Stokes problem with a dominating zeroth order term. The method consists in subtracting a mesh dependent term from the formulation without compromising consistency. The design of this mesh dependent term, as well as the stabilization parameter involved, are suggested by bubble condensation. Stability is proven for any combination of velocity and pressure spaces, under the hypotheses of continuity for the pressure space. Optimal order error estimates are derived for the velocity and the pressure, using the standard norms for these unknowns. Numerical experiments confirming these theoretical results, and comparisons with previous methods are presented. Received April 26, 2001 / Revised version received July 30, 2001 / Published online October 17, 2001 Correspondence to: Gabriel R. Barrenechea  相似文献   

10.
In this paper, we consider the finite element methods for solving second order elliptic and parabolic interface problems in two-dimensional convex polygonal domains. Nearly the same optimal -norm and energy-norm error estimates as for regular problems are obtained when the interfaces are of arbitrary shape but are smooth, though the regularities of the solutions are low on the whole domain. The assumptions on the finite element triangulation are reasonable and practical. Received July 7, 1996 / Revised version received March 3, 1997  相似文献   

11.
Summary. The aim of this work is to study a decoupled algorithm of a fixed point for solving a finite element (FE) problem for the approximation of viscoelastic fluid flow obeying an Oldroyd B differential model. The interest for this algorithm lies in its applications to numerical simulation and in the cost of computing. Furthermore it is easy to bring this algorithm into play. The unknowns are the viscoelastic part of the extra stress tensor, the velocity and the pressure. We suppose that the solution is sufficiently smooth and small. The approximation of stress, velocity and pressure are resp. discontinuous, continuous, continuous FE. Upwinding needed for convection of , is made by discontinuous FE. The method consists to solve alternatively a transport equation for the stress, and a Stokes like problem for velocity and pressure. Previously, results of existence of the solution for the approximate problem and error bounds have been obtained using fixed point techniques with coupled algorithm. In this paper we show that the mapping of the decoupled fixed point algorithm is locally (in a neighbourhood of ) contracting and we obtain existence, unicity (locally) of the solution of the approximate problem and error bounds. Received July 29, 1994 / Revised version received March 13, 1995  相似文献   

12.
Summary. A model for the phase separation of a multi-component alloy with non-smooth free energy is considered. An error bound is proved for a fully practical piecewise linear finite element approximation using a backward Euler time discretization. An iterative scheme for solving the resulting nonlinear algebraic system is analysed. Finally numerical experiments with three components in one and two space dimensions are presented. In the one dimensional case we compare some steady states obtained numerically with the corresponding stationary solutions of the continuous problem, which we construct explicitly. Received September 28, 1995 / Revised version received May 6, 1996  相似文献   

13.
The paper is concerned with the study of an elliptic boundary value problem with a nonlinear Newton boundary condition. The existence and uniqueness of the solution of the continuous problem is established with the aid of the monotone operator theory. The main attention is paid to the investigation of the finite element approximation using numerical integration for the computation of nonlinear boundary integrals. The solvability of the discrete finite element problem is proved and the convergence of the approximate solutions to the exact one is analysed. Received April 15, 1996 / Revised version received November 22, 1996  相似文献   

14.
Summary. A least-squares mixed finite element method for general second-order non-selfadjoint elliptic problems in two- and three-dimensional domains is formulated and analyzed. The finite element spaces for the primary solution approximation and the flux approximation consist of piecewise polynomials of degree and respectively. The method is mildly nonconforming on the boundary. The cases and are studied. It is proved that the method is not subject to the LBB-condition. Optimal - and -error estimates are derived for regular finite element partitions. Numerical experiments, confirming the theoretical rates of convergence, are presented. Received October 15, 1993 / Revised version received August 2, 1994  相似文献   

15.
16.
Summary. This paper describes the numerical analysis of a time dependent linearised fluid structure interaction problems involving a very viscous fluid and an elastic shell in small displacements. For simplicity, all changes of geometry are neglected. A single variational formulation is proposed for the whole problem and generic discretisation strategies are introduced independently on the fluid and on the structure. More precisely, the space approximation of the fluid problem is realized by standard mixed finite elements, the shell is approximated by DKT finite elements, and time derivatives are approximated either by midpoint rules or by backward difference formula. Using fundamental energy estimates on the continuous problem written in a proper functional space, on its discrete equivalent, and on an associated error evolution equation, we can prove that the proposed variational problem is well posed, and that its approximation in space and time converges with optimal order to the continuous solution. Received May 14, 1999 / Revised version revised October 14, 1999 / Published online July 12, 2000  相似文献   

17.
Summary. In this paper we study the numerical behaviour of elliptic problems in which a small parameter is involved and an example concerning the computation of elastic arches is analyzed using this mathematical framework. At first, the statements of the problem and its Galerkin approximations are defined and an asymptotic analysis is performed. Then we give general conditions ensuring that a numerical scheme will converge uniformly with respect to the small parameter. Finally we study an example in computation of arches working in linear elasticity conditions. We build one finite element scheme giving a locking behaviour, and another one which does not. Revised version received October 25, 1993  相似文献   

18.
Summary. In this paper we study the relationship between the Hermann-Miyoshi and the Ciarlet-Raviart formulations of the first biharmonic problem. This study will be based on a decomposition principle which will leads us to a new convergence analysis explaining some discrepancies between numerical results obtained with the first formulation on certain meshes and some theoretical convergence results. Received May 24, 1994 / Revised version received August 11, 1995  相似文献   

19.
On the quadratic finite element approximation to the obstacle problem   总被引:1,自引:0,他引:1  
Summary. In this paper, we obtain the error bound for any , for the piecewise quadratic finite element approximation to the obstacle problem, without the hypothesis that the free boundary has finite length (see [3]). Received October 31, 2000 / Revised version received July 23, 2001 / Published online October 17, 2001 The project was supported by the National Natural Science Foundation of China  相似文献   

20.
Summary. In this paper the Wilson nonconforming finite element is considered for solving a class of two-dimensional second-order elliptic boundary value problems. Superconvergence estimates and error expansions are obtained for both uniform and non-uniform rectangular meshes. A new lower bound of the error shows that the usual error estimates are optimal. Finally a discussion on the error behaviour in negative norms shows that there is generally no improvement in the order by going to weaker norms. Received July 5, 1993  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号