首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure Fe3O4 and Mn-doped Fe3O4 nanoparticles were synthesized by simple wet chemical reduction technique using nontoxic precursors. Manganese doping of two concentrations, 10 and 15%, were employed. All the three synthesized nanoparticles were characterized by stoichiometry, crystal structure, and surface morphology. Thermal studies on as-synthesized nanoparticles of pure ferrite (Fe3O4) and manganese (Mn) doped ferrites were carried out. The thermal analysis of the three as-synthesized nanoparticles was done by thermogravimetric (TG), differential thermogravimetric, and differential thermal analysis techniques. All the thermal analyses were done in nitrogen atmosphere in the temperature range of 308–1233 K. All the thermocurves were recorded for three heating rates of 10, 15, and 20 K min?1. The TG curves showed three steps thermal decomposition for Fe3O4 and two steps thermal decompositions for Mn-doped Fe3O4 nanoparticles. The kinetic parameters of the three as-synthesized nanoparticles were evaluated from the thermocurves employing Kissinger–Akahira–Sunose (KAS) method. The thermocurves and evaluated kinetic parameters are discussed in this paper.  相似文献   

2.
The surface morphology and thermal properties of polyurethanes can be correlated to their chemical composition. The hydrophilicity, surface morphology, and thermal properties of polyurethanes (differed in soft segments and in linear/cross-linked structure) were investigated. The influence of poly([R,S]-3-hydroxybutyrate) presence in soft segments and blending of polyurethane with polylactide on surface topography were also estimated. The linear polyurethanes (partially crystalline) had the granular surface, whereas the surface of cross-linked polyurethanes (almost amorphous) was smooth. Round aggregates of polylactide un-uniformly distributed in matrix of polyurethane were clearly visible. It was concluded that some modification of soft segment (by mixing of poly([R,S]-3-hydroxybutyrate) with different polydiols and polytriol) and blending of polyurethanes with small amount of polylactide influence on crystallinity and surface topography of obtained polyurethanes.  相似文献   

3.
The influence of powder fillers (boron nitride, aluminum powder, processed asbestos) on the thermal conductivity and linear thermal-expansion coefficient of epoxy adhesives has been investigated. It has been shown that the use of powder fillers makes it possible to develop polymer compositions with a high thermal conductivity.  相似文献   

4.

Rigid polyurethane foam/aluminum diethylphosphinate (RUPF/ADP) composites were prepared by one-step water-blown method. Furthermore, scanning electron microscope (SEM), thermal conductivity meter, thermogravimetric analysis (TGA), limiting oxygen index, Underwriters Laboratories vertical burning test (UL-94) and microsacle combustion calorimetry were applied to investigate thermal conductivity, thermal stability, flame retardancy and combustion behavior of RPUF/ADP composites. Thermogravimetric analysis–Fourier transform infrared spectroscopy (TG–FTIR) was introduced to investigate gaseous products in degradation process of RPUF/ADP composites, while SEM and X-ray photoelectron spectroscopy were used to research char residue of the composites. It was confirmed that RPUF/ADP composites presented well cell structure with density of 53.1–59.0 kg m?3 and thermal conductivity of 0.0425–0.0468 W m?1 K?1, indicating excellent insulation performance of the composites. Flame retardant test showed that ADP significantly enhanced flame retardancy of RPUF/ADP composites, RPUF/ADP30 passed UL-94 V-1 rating with LOI of 23.0 vol%. MCC test showed that ADP could significantly decrease peak of heat release rate (PHPR) of RPUF/ADP composites. PHPR value of RPUF/ADP20 was decreased to 158 W g?1, which was 21.8% reduced compared with that of pure RPUF. TG–FTIR test revealed that the addition of ADP promoted the release of CO2, hydrocarbons and isocyanate compound in first-step degradation of RPUF matrix while inhibited the release of CO in second step degradation. Char residue analysis showed that the addition of ADP promoted polyurethane molecular chain to form aromatic and aromatic heterocyclic structure, enhancing strength and compactness of the char. This work associated a gas–solid flame retardancy mechanism with the incorporation of ADP, which presented an effective strategy for preparation of flame retardant RPUF composites.

  相似文献   

5.
6.
Flexible polyurethane (PU) nanocomposite foams were synthesized using organically modified montmorillonite clay (Cloisite 30B). The dispersion of organoclay was considered both in the isocyanate and polyol matrixes. Silicate layers of organoclay can be exfoliated in PU matrix by use of two steps mixing process. The presence of clay increased the cell density and reduced the cell size compared to the conventional PU foam. Clay dispersion was investigated by X-ray diffraction (XRD). The morphology and properties of PU nanocomposite foams were also studied. Generally, mechanical properties by addition of clay were improved. Foams in which clay was firstly dispersed in the isocyanate, showed better dispersion due to affinity of OH group on the clay surface to react with NCO groups. Better properties have been achieved with these nanofoams.  相似文献   

7.
The influence of thermal annealing on molecular weight, microphase mixing, and multiple melting behavior of a segmented block copolyurethane is reported. The material studied contained 55% of hard segment consisting of 4,4'-diphenylmethane diisocyanate and butanediol, and a poly (propylene oxide) diol of molecular weight 2000 as the soft segment. The thermal stability of the materials was influenced greatly by the order-disorder transition, estimated to occur at ca. 191°C. Upon annealing above this temperature, molecular weight increased rapidly as a result of chain branching reactions. Microphase separation increased under these conditions, while the degree of hard segment crystallinity decreased. Annealing below the order-disorder transition temperature resulted in relatively small molecular weight increases for short annealing times, but large increases for annealing times greater than one hour. Glass transition temperature data for these thermal treatments was consistent with upper critical solution temperature behavior and selective solubility by hard segment sequence length according to the Koberstein-Stein hard microdomain model. The critical hard segment sequence for segregation was estimated (for 30 min annealing) to contain ca. 5 diisocyanate residues at 80°C, ca. 8 residues at 185°C, and increased slowly with annealing time. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The typical nano-carbon materials, 1D fiber-like carbon nanotubes (CNTs) and 2D platelet-like graphene nanosheets (GRNs), that have attracted tremendous attention in the field of polymer nanocomposites due to their unprecedented properties, are used as conducting filler to induce a considerable improvement in the mechanical, thermal and electrical properties of the resulting graphene/polymer nanocomposites at very low loading contents. This study deals with the preparation and electro-stimulus response properties of polyurethane (PU) dielectric elastomer films with such 1D and 2D nanocarbon fillers embedded in the polymer matrix. The various forms of carbon used in composite preparation include CNT, GRN and CNT-GRN hybrid fillers. Results indicate that the dielectric, mechanical and electromechanical properties depend on the carbon filler type and the carbon filler weight fraction. Here, it has been also established that embedding CNT-GRN hybrid fillers into pristine polyurethane endows somewhat better dispersion of CNTs and GRNs as well as better interfacial adhesion between the carbon fillers and matrix, which results in an improvement in electric-induced strain. Therefore, the nanocomposites seem to be very attractive for microelectromechanical systems applications.  相似文献   

9.
彭懋 《高分子科学》2010,28(4):615-624
<正>This study investigated the influence of various organically modified montmorillonites(organoclays) on the structure and properties of rigid polyurethane foam(RPUF) nanocomposites.The organoclays were modified with cetyltrimethyl ammonium bromide(CTAB),methyl tallow bis(2-hydroxyethyl) quaternary ammonium chloride (MT2ETOH) and tris(hydroxymethyl)aminomethane(THMA) and denoted as CMMT,Cloisite 30B and OMMT, respectively.MT2ETOH and THMA contain hydroxyl groups,while THMA does not have long aliphatic tail in its molecule. X-ray diffraction and transmission electron microscopy show that OMMT and Cloisite 30B can be partially exfoliated in the RPUF nanocomposites because their intercalating agents MT2ETOH and THMA can react with isocyanate.However, CMMT modified with nonreactive CTAB is mainly intercalated in the RPUF matrices.At a relatively low filler content,the RPUF/CMMT composite foam has a higher specific compressive strength(the ratio of compressive strength against the apparent density of the foams),while at relatively high filler contents,RPUF/Cloisite 30B and RPUF/OMMT composites have higher specific compressive strengths,higher modulus and more uniform pore size than the RPUF/CMMT composite.  相似文献   

10.
In this work thermal transitions and thermal stability of polyurethane intermediates and polyurethanes were investigated. The intermediates were obtained by glycolysis of waste polyurethane (PUR) in the reaction with hexamethylene glycol (HDO). The excess of HDO was not separated from the product after the glycolysis process was finished. The effects of different mass ratio of HDO to PUR foam on selected physicochemical properties (hydroxyl number, Brookfield viscosity and density) were also determined. The polyurethanes were synthesized from the obtained intermediates by the prepolymer method using diisocyanate (MDI) and glycolysis product of molecular mass in range 700/1000 g mol–1. Hexamethylene glycol, 1,4-butanediol and ethylene glycol were used as chain extender agents. Influence of NCO groups concentration in prepolymer on glass transition temperature (T g) and storage and loss modulus (E’, E’’) of polyurethanes were investigated by the DMTA method. Thermal decomposition of obtained glycolysates and polyurethanes was followed by thermogravimetry coupled with Fourier transform infrared spectroscopy. Main products of thermal decomposition were identified.  相似文献   

11.
The effects of sepiolite modified with γ-aminopropyltriethoxylsilane (KH550-Sp) on thermal properties of polyurethane (PU) nanocomposites were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and tensile test. The DSC results showed that the glass transition temperature of hard segments in PU/KH550-Sp nanocomposite increased with the increase of KH550-Sp, because sepiolite restricted the formation of hydrogen bonding within hard segments of polyurethane. TG results revealed that the thermal stability of PU was improved by KH550-Sp, and the onset decomposition temperature for PU nanocomposites with a KH550-Sp content of 3 wt% was about 20 °C higher than that for pure PU. The tensile properties of pure PU and nanocomposites before and after ageing 120 °C for 72 h were determined, and it was observed that the percentage loss in tensile strength decreased with the addition of KH550-Sp because of an oxidation barrier of KH550-Sp confirmed by ATR-FTIR.  相似文献   

12.
The effects of quantity of graphene and carbon nanotube‐based fillers and their pendant functional groups on the shear properties of a thermoset epoxy were investigated. Two novel functionalized graphenes, one with epoxy functionality and the other with an amine, are synthesized for this purpose. Nanocomposites are prepared at concentrations of 0.5, 1, 2, 3, 5, and 10 wt % and the effects of functionalization on the homogeneity of dispersion and the shear mechanical properties are investigated. The properties of the epoxy nanocomposites containing epoxy‐ and amine‐functionalized graphene are compared with those containing graphene oxide, Claisen‐functionalized graphene, neat multiwalled carbon nanotubes (MWNTs), three types of epoxy‐functionalized MWNT (EpCNT), and the unfilled epoxy. One of the EpCNT ( EpCNT3 ) was found to increase the plateau shear storage modulus by 136% (1.67–3.94 MPa) and the corresponding loss modulus by almost 400% at a concentration of 10 wt %. Several other fillers were also found to increase shear properties at certain concentrations. A hybrid system of EpCNT3 and graphite was also studied, which improved the storage modulus by up to 51%. SEM images reveal a correlation between thorough dispersion of the additive and enhancement of shear modulus. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 997–1006  相似文献   

13.
Polyurethane foam (PU) samples prepared as an industrial product from a polyether polyol and toluene diisocyanate and containing 6% tetrakis(2-chloroethyl) ethylenediphosphate as flame retardant have been subjected to simultaneous TA-MS (thermogravimetry-differential thermal analysis-derivative thermal analysis-mass spectrometry) in static air until residual char products have been formed. The thermal decomposition and the detection of toxic compounds released from the PU as a function of temperature are described.  相似文献   

14.
The rigid polyurethane foam materials based on ODF-M complex oligoester filled by hollow silicaalumina microspheres with various surface nature were studied. Physical-mechanical properties of the obtained materials were studied.  相似文献   

15.
Poly(ethylene succinate) and poly(butylene succinate) are synthetic biodegradable polymers, and much attention is paid to study the properties of pure polymers and the polymers modified by different comonomers and filling materials. The literature data on the physical properties of these polymers vary widely depending on their method of preparation and subsequent modifications. Most of the studies deal with low- and moderate-molecular-weight polymers or commercial grade polymers, modified by different comonomers and chain-extension agents. The data on pure high-molecular-weight polymers are scarce. In this work, we have prepared high-molecular-weight (MW range of (1.4–1.8) × 105) poly(ethylene succinate) and poly(butylene succinate) by direct polycondensation at 200°C in a nitrogen flow without chain-extension agents. We have further studied the properties of pure polymers and examined the effect of different fillers (carbon nanotubes, SiO2, Aerosil®) on the mechanical and physical properties of these polymers. Because of high-molecular-weight, the polymers possess increased tensile and storage moduli and thermostability. Even very low filler contents (up to 1 wt %) have a pronounced influence on the polymer properties: the polymer tensile and the storage modulus increases, the elongation at break decreases, and the thermal stability of the polymers decreases slightly. The effects of fillers are less pronounced compared with those for low- and moderate-molecular-weight polymers. When mixed together, poly(ethylene succinate) and poly(butylene succinate) crystallize independently from each other as evident from the mechanical and thermal analysis data.  相似文献   

16.
Summary Structure and preferred orientation of a series of carbon fibers with various degrees of graphitization have been studied by X-ray diffraction. The relationship between preferred orientation and Young's modulus differs from that reported for non-graphitic carbon fibers. The difference is explained by an increase of the shear compliance of the structural unit with increasing graphitization which results, for constant preferred orientation, in a decrease of the Young's modulus of the fiber with increasing graphitization.
Zusammenfassung Struktur und Vorzugsorientierung einer Reihe von Kohlefasern mit verschiedenen Graphitierungsgraden wurden röntgenographisch untersucht. Die Beziehung zwischen Vorzugsorientierung und Elastizitätsmodul ist verschieden von der für nichtgraphitische Kohlefasern beobachteten. Der Unterschied wird durch eine Zunahme der Schernachgiebigkeit der Strukturbausteine mit zunehmender Graphitierung erklärt, die bei konstanter Vorzugsorientierung eine Verminderung des Elastizitätsmoduls der Fasern mit steigender Graphitierung zur Folge hat.
  相似文献   

17.
The thermal decomposition of SEX in a nitrogen atmosphere was studied by coupled thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR), and by pyrolysis-gas chromatography-mass spectrometry (py-GC-MS). The TG curve exhibited two discrete mass losses of 45.8% and 17.8% respectively, at 200 and 257–364°C. The evolved gases identified as a result of the first mass loss were carbonyl sulfide (COS), ethanol (C2H5OH), ethanethiol (C2H5SH), carbon disulfide (CS2), diethyl sulfide ((C2H5)2S), diethyl carbonate ((C2H5O)2CO), diethyl disulfide ((C2H5)2S2), and carbonothioic acid, O, S, diethyl ester ((C2H5S)(C2H5O)CO). The gases identified as a result of the second mass loss were carbonyl sulfide, ethanethiol, and carbon disulfide. Hydrogen sulfide was detected in both mass losses by py-GC-MS, but not detected by FTIR. The solid residue was sodium hydrogen sulfide (NaSH).SEX was adsorbed onto activated carbon, and heated in nitrogen. Two discrete mass losses were still observed, but in the temperature ranges 100–186°C (7.8%) and 186–279°C (11.8%). Carbonyl sulfide and carbon disulfide were now the dominant gases evolved in each of the mass losses, and the other gaseous products were relatively minor. It was demonstrated that water adsorbed on the carbon hydrolysed the xanthate to cause the first mass loss, and any unhydrolysed material decomposed to give the second mass loss.Mr. N. G. Fisher would like to thank the A. J. Parker CRC for Hydrometallurgy for the provision of a PhD scholarship.  相似文献   

18.
Abstract

In this study, negative ionpowder was modified with a silane coupling agent and then added to the polyurethane flexible foam to prepare NI/PU flexible foam composites by the one-step foaming method. The effects of the amount of negative ion powder on the mechanical properties, thermal properties and release of negative ions were investigated using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and negative ion detectors. The SEM results showed that modified negative ion powder could be more uniformly distributed around the cell walls of the polyurethane flexible foam. The thermal stability, tensile strength and resilience of the NI/PU flexible foam composite were improved with the increase of the amount of modified negative ion powder. Increasing the amount of modified negative ion powder could also result in an increase in the release of negative ions, and it reached 5500/cm3 or higher at a negative ion content of 3%.  相似文献   

19.
The dehydration and decomposition of the red mud from Seydięehir Aluminum factory, mixed with soda were investigated under dynamic and isothermal conditions. Soda was added to the red mud samples as much as 50, 100 and 150 mass% of Na2CO3 of the red mud sample's mass. To determine the effect of soda additive on the red mud's thermal properties, using TG and DTA techniques simultaneously under atmospheric conditions. Furthermore, the original red mud sample's XRD and IR spectrum curves were investigated. It seems that the temperatures of the endothermic peaks of the red mud decreased with the amount of soda added. However the endothermic peak's temperature readings showed that the melting of soda increased gradually with the quantity of soda used. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The paper reports on thermal, tensile and morphological properties of thermoplastic polyurethane (TPU) based films obtained by melt-compounding and chill-roll extrusion. Composite films containing up to 1 wt% of multiwalled carbon nanotubes (MWNTs) are characterized in terms of thermal properties, tensile behavior and morphological issues taking the neat TPU film as the reference material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号