首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocomposite TiAlSiCuN films were deposited on high speed steels by filtered magnetic arc ion plating. Detailed properties of the films annealed at various temperatures are studied. After thermal annealing at different temperatures ranging from 400 to 800 °C, changes in the film micro‐structure, chemical and phase composition, surface morphology, hardness and polarization curve properties were systematically characterized by X‐ray diffraction, X‐ray photoelectron spectroscopy, scanning electron microscopy, nano‐indenter and electrochemical workstation, respectively. It was found that the TiAlSiCuN films could be fully oxidized at 800 °C, Al and Ti atoms all diffused outwards and formed dense protective Al2O3 and TiO2 layer. Simultaneously, the TiAlN phase gradually disappeared. The films annealed at 400 °C obtained the highest hardness because of the certain grain growth and little generated oxides. Besides, the certain formation of dense protective Al2O3 layer made the TiAlSiCuN film annealed at 600 °C present the least corrosion current density and the corrosion voltage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Polymer/clay nanocomposite films were prepared by means of electrodeposition of aqueous suspension including cathodic electrophoretic acrylic resin (CEAR) and Na+-montmorillonite (NMMT). Studies of XRD, SEM and TEM indicated well-dispersed NMMT platelets in the films prepared. The ideal dispersity achieved was thought to be the result of aqueous compatibility between CEAR molecules and NMMT platelets and the result of the water-involved process as well. The modulus and strength of the polymer/clay nanocomposite coatings tested by tensile testing and nano-indentation were effectively improved compared to those of the virgin CEAR film. In addition, the adhesion strength, flexibility and water-resistance represented by Chinese national standard (GB) kept the best grades.  相似文献   

3.
A new series of carbon-based films doped with graphene oxide and cobalt (G-Co/a-C:H films) were successfully prepared on Si substrate via one-step electrochemical deposition of methanol as the carbon source and graphene oxide/cobalt as the dopant. G-Co/a-C:H films were fabricated at various graphene oxide concentration for comparative experiments. It can be found that the graphene oxide and cobalt were well embedded in amorphous carbon matrix to form superhydrophobic G-Co/a-C:H film at the doping GO concentration of 0.007 mg/mL, which was confirmed by transmission electron microscopy (TEM). It was noted that the superhydrophobicity of the resulting surface derives from its rough surface with hierarchical micro-nanostructures and the presence of the low-surface-energy GO components on it. The hierarchical micro-nanostructures are attributed to the corporate joint of GO and cobalt to form the multilevel nanoscale composite interface. Specially, the as-fabricated superhydrophobic G-Co/a-C:H film could exhibit excellent self-cleaning ability and corrosion resistance, revealed by the self-cleaning and corrosion tests.  相似文献   

4.
Hydrogels based on nanocomposites of statistical poly(hydroxyethyl acrylate-co-ethyl acrylate) and silica, prepared by simultaneous copolymerization and generation of silica nanoparticles by sol?Cgel process at various copolymer compositions and silica contents, characterized by a fine dispersion of filler, were investigated with respect to glass transition and polymer dynamics by dielectric techniques. These include thermally stimulated depolarization currents and dielectric relaxation spectroscopy, covering together broad ranges of frequency and temperature. In addition, equilibrium water sorption isotherms were recorded at room temperature (25?°C). Special attention was paid to the investigation of effects of silica on glass transition, polymer dynamics (secondary ?? and ?? sw relaxations and segmental ?? relaxation), and electrical conductivity in the dry systems (xerogels) and in the hydrogels at various levels of relative humidity/water content. An overall reduction of molecular mobility is observed in the nanocomposite xerogels, in particular at high silica contents. Analysis of the results and comparison with previous work on similar systems enable to discuss this reduction of molecular mobility in terms of constraints to polymeric motion imposed by interfacial polymer?Cfiller interactions and by the formation of a continuous silica network interpenetrated with the polymer network at filler contents higher than about 15?wt%.  相似文献   

5.
Zirconia/polydopamine (ZrO2/PDA) nanocomposite multilayer films were constructed on Si substrate via a novel nonelectrostatic layer‐by‐layer (NELBL) assembly technique. The building block of this technique is the newly reported dopamine molecule, which can be attached to almost all material surfaces and undergo oxidation‐polymerization to form PDA layers; more importantly, the outer hydroxyl groups of the PDA layer can chelated with certain inorganic oxide nanoparticles to generate oxide films. Thus, ZrO2/PDA nanocomposite multilayer films were fabricated by sequential NELBL deposition of PDA and ZrO2 nanoparticles. The formation of the ZrO2/PDA nanocomposite multilayer films was monitored by the water contact angle (WCA) and ellipsometric thickness measurements, while the microstructure of the fabricated films was analyzed by means of atomic force microscope (AFM), field emission scanning electron microscope (FESEM), X‐ray photoelectron spectrum (XPS), and X‐ray diffraction (XRD) analysis. The mechanical and anticorrosion behaviors of the annealed ZrO2/PDA nanocomposite multilayers were found to be greatly enhanced as compared with that of the annealed homogeneous ZrO2 film. The better mechanical and anticorrosion behaviors of the annealed ZrO2/PDA nanocomposite multilayers than the annealed homogeneous ZrO2 film may be closely related to their special microstructure. Namely, the organic–inorganic hybrid microstructure of the annealed ZrO2/PDA nanocomposite multilayers may largely account for the increased nanohardness and corrosion resistance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
We investigate the multilayered structures of poly(ethylene)oxide/montmorillonite nanocomposite films made from solution. The shear orientation of a polymer-clay network in solution combined with simultaneous solvent evaporation leads to supramolecular multilayer formation in the film. The resulting films have highly ordered structures with sheet-like multilayers on the micrometer length scale. The polymer covered clay platelets were found to orient in interconnected blob-like chains and layers on the nanometer length scale. Inside the blobs, scattering experiments indicate the polymer covered and stacked clay platelets oriented in the plane of the film. The polymer is found to be partially crystalline although this is not visible by optical microscopy. Atomic force microscopy suggests that the excess polymer, which is not directly adsorbed to the clay, is wrapped around the stacked platelets building blobs and the polymer also interconnects the polymer-clay layers. Overall our results suggest the re-intercalation of clay platelets in films made from exfoliated polymer-clay solutions as well as the supramolecular order and hierarchical structuring on the nanometer, via micrometer to the centimeter length scale.  相似文献   

7.
A rod-like 1-dodecanethiol film assisted with the preferential adhesion of polydopamine was prepared on the non-etching copper surfaces by a simple dip-coating method. The formation and surface structure of the film were characterized by water contact angle measurement, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Once the 1-dodecanethiol film formed on the polydopamine-coated copper surface, the hydrophilic surface changed to hydrophobic. The corrosion behavior of the functional films was evaluated by the electrochemical impedance spectroscopy (EIS). The excellent corrosion resistance property could be ascribed to the compact film structure and good seawater stability for modified copper surface, especially in limiting the infiltration of Cl.  相似文献   

8.
A simple method for producing electrochemically-active palladium nanoparticles within ultra-thin Nafion films is described.  相似文献   

9.
Journal of Thermal Analysis and Calorimetry - To prepare a commercial product with economic and technical relevance, polyvinyl acetate (PVAc) was synthesized, under our laboratory conditions,...  相似文献   

10.

Present work describes investigations of a two-step process consisting of galvanostatic anodising in a 1 M H2SO4 solution at 100 mA cm−2 up to the limiting voltages of 20, 60, 80, 100 and 120 V, directly after which potentiostatic regime was employed and the current was allowed to drop. The total treatment time (5 min) was held constant for all samples. The treatment was carried out to improve the corrosion resistance of zirconium in physiological conditions, which was determined by electrochemical evaluation in Ringer’s solution. XPS studies revealed that after anodising sulphur was incorporated into the oxide film in the form of sulphated zirconia. The maximum content of sulphate in the oxide layer was observed after anodising at 80 V. Anodising at higher voltages resulted in formation of coatings with decreasing amount of sulphur. It was found that there is a strong correlation between the sulphur content in the oxide layers and the measured corrosion current density. On the other hand, the pitting corrosion resistance seemed to be unaffected by the presence of S and it was improving with the increasing limiting voltage of the treatment.

  相似文献   

11.
Poly(amic acid) (PAA) was prepared by the reaction of 4,4'‐(hexafluoro‐isopropylidene)diphthalic anhydride (6FDA) with 2,2'‐bis[4‐(4‐aminophenoxy)phenyl] hexafluoropropane (BAPP) in N,N‐dimethylacetamide (DMAc). Hybrid films were obtained from blend solutions of the precursor polymer and the organoclay Cloisite 15A, varying the organoclay content from 0 to 3.0 wt%. The cast PAA film was heat‐treated at different temperatures to create polyimide (PI) hybrid films, which showed excellent optical transparencies and were almost colorless. The intercalation of PI chains in the organoclays was examined by means of wide‐angle X‐ray diffraction (XRD) and electron microscopy (SEM and TEM). In addition, the thermo‐mechanical properties were tested using a differential scanning calorimeter (DSC), a thermogravimetric analyzer (TGA), and a universal tensile machine (UTM). In the XRD, SEM, and TEM results for the PI hybrid films, a substantial increase in the agglomeration of the clay particles was observed as the clay loading was increased from 0.5 to 3.0 wt%. This suggests that in the hybrid materials with low clay content, the clay particles are better dispersed in the matrix polymer and do not agglomerate significantly. We found that the addition of a small amount of organoclay is sufficient to improve the thermal and mechanical properties of the PI, with the maximum enhancement being observed at 1.0 wt% Cloisite 15A. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The orientation of platelets in micro-meter-thick polymer-clay nanocomposite films was investigated with small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD). The films with various clay contents (15–60% by mass fraction) were prepared by a layer-by-layer approach from polymer-clay solutions that led to the formation of a high degree of orientation in both polymer and clay platelets. Shear-induced orientation of polymer-clay solutions is compared with the orientation of polymer-clay films. SANS, SAXS, and WAXD, with beam configurations in and perpendicular to the spread direction of the film, were used to determine the structure and orientation of platelets. In all films, the clay platelets oriented preferentially in the plane of the film. The observed differences in semidilute solutions, with clay surface normal parallel to the vorticity direction, versus bulk films and with clay surface normal parallel to the shear gradient direction at clay mass fractions of 40 and 60%, were attributed to the collapses of clay platelet during the drying process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3237–3248, 2003  相似文献   

13.
New hybrid optical sensors have been prepared by grafting specifically designed fluorescent, functionalised, phosphorus-containing dendrimers onto a nanocrystalline mesoporous titania thin film formed by evaporation-induced self-assembly. The structural characterisation and optical behaviour of these new fluorescent probes have been studied both in solution and after being grafted onto an inorganic network, which resulted in the discovery of improved probing selectivity in the solid state. This new hybrid sensor exhibits high sensitivity to phenolic OH moieties (especially those from resorcinol and 2-nitroresorcinol), which induce the quenching of fluorescence more efficiently in the solid state than in solution. This effect is a result of the increased spatial proximity of the fluorescent molecules, which is induced by pore confinement that makes the formation of hydrogen bonds between the hydroxyl moieties of the quenchers and the carbonyl groups of the dendrimer easier.  相似文献   

14.
Mesostructured lamellar nanocomposite films with alternating silica and organic layers containing poly(N-isopropropyl acrylamide) (PNIPAM) were prepared using evaporation-induced self-assembly. A suitable theoretical approach to analyze the small-angle X-ray scattering (SAXS) patterns of oriented lamellar two-phase systems was applied to the SAXS data of films of varying composition, providing details on the self-assembly process, the composition, and the polymerization. In particular, this approach allowed an accurate determination of the thickness of the silica and the organic layer. The applicability of the SAXS approach was carefully tested with simulated data and verified by thermogravimetric analysis (TGA). TGA and (13)C NMR were used to study the polymerization and linkage to the silica matrix. SAXS and time-resolved grazing incidence SAXS revealed that the phase transition of PNIPAM at ca. 32 degrees C leads to a reversible expansion/contraction perpendicular to the layers on a time scale of ca. 30 min.  相似文献   

15.
Bionanocomposites with improved properties based on two microbial polysaccharides, pullulan and bacterial cellulose, were prepared and characterized. The novel materials were obtained through a simple green approach by casting water-based suspensions of pullulan and bacterial cellulose and characterized by TGA, RDX, tensile assays, SEM and AFM. The effect of the addition of glycerol, as a plasticizer, on the properties of the materials was also evaluated. All bionanocomposites showed considerable improvement in thermal stability and mechanical properties, compared to the unfilled pullulan films, evidenced by the significant increase in the degradation temperature (up to 40 °C) and on both Young’s modulus and tensile strength (increments of up to 100 and 50%, for films without glycerol and up to 8,000 and 7,000% for those plasticized with glycerol). Moreover, these bionanocomposite films are highly translucent and could be labelled as sustainable materials since they were prepared entirely from renewable resources and could find applications in areas as organic electronics, dry food packaging and in the biomedical field.  相似文献   

16.
Hybrid nanocomposite films containing silica (??11.4 wt.%) or titania (??18.8 wt.%) in the polymer matrix were prepared by the sol-gel method using the hydrolytic polycondensation of tetraethoxysilane and tetrabutoxysilane in a THF solution of aromatic polymer, polysulfone (PSF). The influence of the oxide nature and the film composition on the structure, the interaction of the polymer with oxides, hydrophilicity, and sorption-diffusion properties of the hybrid films were studied by FTIR spectroscopy, atomic force microscopy, dynamic light scattering, and a complex of other physicochemical methods. The absence of chemical or intermolecular hydrogen bonds between the polymer and oxide particles in the PSF films was shown. The average size of the oxides (SiO2, ??20 nm; TiO2, ??90 nm) in the films and roughness of their surface (??0.2?C0.8 nm) were determined. The introduction of oxides into the polymer matrix increases the hydrophilic properties and the ability of the PSF films to swell in water; the diffusion coefficients of water and permeability of water vapor in the PSF films also increase. Titania also induces a more considerable change in the structure of the polymer matrix and more strongly affects the sorption-diffusion properties of the hybrid films in aqueous solutions of THF. All prepared nanocomposite films PSF/SiO2 and PSF/TiO2 are capable of extracting an organic component from aqueous solutions and can be used as sorbents and membrane films for the removal of organic substances from the aqueous medium.  相似文献   

17.
Based on thermodynamic simulation on the deposition of condensed phases with the complex composition in the Si–C–N–O–H system in a wide temperature range, using initial gas mixtures of 1,1,3,3-tetramethyldisilazane (HSi(CH3)2)2NH (TMDS), TMDS with a variable mixture of oxygen and nitrogen (O2+xN2), a method is developed to obtain SiC x N y O z :H nanocomposite films by the plasma chemical decomposition of this gas mixture in the temperature range of 373-973 K. By FTIR and energy dispersive X-ray spectroscopy the structure of chemical bonds and the elemental composition of the obtained silicon oxycarbonitride films are studied. The in situ composition of the initial gas phase in PECVD processes is examined by optical emission spectroscopy.  相似文献   

18.
The effects of basic fibre-forming parameters on the thermal properties and flammability of fibres from polyimidoamide (PIA) nanocomposite have examined. The comparative analysis of the properties of fibres from modified PIA and PIA nanocomposite has been conducted. The multi-functional fibres prepared from PIA nanocomposite show increased porosity and sorption properties as well as a high thermal stability and reduced flammability in comparison with fibres without MMT.  相似文献   

19.
The first report on the fabrication and application of a nanocomposite containing poly-N-vinyl carbazole (PVK) polymer and graphene oxide (GO) as an antimicrobial film was demonstrated. The antimicrobial film was 90% more effective in preventing bacterial colonization relative to the unmodified surface. More importantly, the nanocomposite thin film showed higher bacterial toxicity than pure GO-modified surface.  相似文献   

20.
Fuke MV  Vijayan A  Kulkarni M  Hawaldar R  Aiyer RC 《Talanta》2008,76(5):1035-1040
Spin coated films of Co-Polyaniline nanocomposite are evaluated for their transmission properties using He-Ne laser for humidity sensing. The thickness (17-29 microm) of the films is varied by multiple deposition of Co-Polyaniline nanocomposite on a glass substrate. The samples exhibit typically two to three regions in their sensitivity curve when tested in the relative humidity (RH) range of 20-95%. The sensitivity ranges from 0.1 mV/%RH to 12.26 mV/%RH for lower to higher thickness. The sensors show quick response of 8s (20-95%RH), and a recovery time of 1 min (95-20%RH) with good repeatability, reproducibility and low hysteresis effect. The sensitivity of the sensor increases with humidity and thickness. Material characterization is done by X-ray diffraction (XRD), scanning electron micrograph (SEM) and Fourier transform infra-red spectroscopy (FTIR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号