首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Solid-state 29Si NMR spectroscopy was applied to examine Portland cement hydration and cement stone composition as influenced by the nature of commercial ultradispersed silicas (microsilica, precipitated silica, and colloidal silica).  相似文献   

3.
4.
The influence of three mineral additives, i.e. fly ashes from pulverized combustion and from fluidized combustion of hard coal as well as Portland cement, on early hydration (up to 28th day) of calcium aluminate cement was investigated. Cement pastes containing 0, 5 and 25 wt% of additives were studied by the use of calorimetry, thermal analysis and infrared spectroscopy methods. It was confirmed that hydration of calcium aluminate cement is closely dependent on the type of addition and its amount. The influence of additives of different properties on cement hydration was discussed basing on received results and other literature reports.  相似文献   

5.
ZnO added to the system Portland cement — water changes the kinetics of the hydration process substantially. Amorphous zinc hydroxide is formed and inhibits the reaction of tricalcium silicate with water, resulting in an induction period prolongation. This effect depends on the amount of ZnO added to the hydrated paste. The transformation of zinc hydroxide into calcium hydrozincate provokes the further hydration.
Zusammenfassung Durch den Zusatz von ZnO zum System Portlandzement-Wasser wird die Kinetik des Hydratationsprozesses grundlegend verändert. Amorphes Zinkhydroxid wird gebildet, was einen Inhibitor für die Tricalciumsilikatreaktion mit Wasser darstellt, wodurch die Induktionsperiode verlängert wird. Dieser Effekt hängt von der Menge ZnO ab, die dem Zementbrei zugesetzt wurde. Die Umwandlung von Zinkhydroxid zu Calciumhydrozinkat führt eine weitere Hydratation herbei.
  相似文献   

6.
A multicell isoperibolic — semiadiabatic calorimeter was used for the measurement of temperature and the determination of the hydration heat evolution at earlier period of cement pastes setting and hardening. The measurements were aimed at the determination of the effect of superplasticizers (SPs) on the course of the Portland cement hydration. Commercial polycarboxylate SP was added to the mixtures and the heat effect was measured. With the increasing content of SP, the hydration temperature increased up to a certain value and then decreased. In case of a sufficient amount of water in the mixture to achieve complete hydration of cement, samples with the highest values of the maximum hydration temperature reached the highest values of the released total heat. If there is not a sufficient amount of water to achieve complete hydration, the samples with the highest values of the maximum hydration temperature reach the lowest values of the released total heat.  相似文献   

7.
This work complements a quantitative thermogravimetric study of the first 24 h of hydration of a high initial strength and sulphate resistant Portland cement (HS SR PC) using non-conventional differential thermal analysis (NCDTA) and Vicat needle method. Different water/cement (W/C) ratios from 0.35 to 0.85 were used to evaluate the most indicated operating conditions to maximize calcium hydroxide production for further use in CO2 capture. Thermogravimetric analysis data performed at 4 and 24 h of hydration were also compared to the NCDTA and Vicat data for each kind of paste, to analyze the influence of the W/C ratio on the simultaneous hydration and setting process. The increase of the W/C ratio increases the induction time retards the solidification and setting processes but increases the hydration degree as the W/C ratio is increased from 0.45. At 24 h, products prepared with 0.35 W/C ratio present a little higher hydration degree than those prepared with W/C = 0.45, because of the highest level of temperature in the reacting mixture in the former case, during the first 8 h. There is a practical limit of W/C = 0.66 to prepare the pastes, due to a limit of the miscibility between HS SR PC and water, above which, the excess of water forms a separated phase that does not interfere in the hydration process.  相似文献   

8.
Thermogravimetry (TG) and derivative thermogravimetry (DTG) were used to analyze the early stages of hydration of a high-initial strength and sulphate resistant Portland cement (HS SR PC) within the first 24 h of setting. The water/cement (W/C) mass ratios used to prepare the pastes were 0.35, 0.45, and 0.55. The hydration behavior of the pastes was analyzed through TG and DTG curves obtained after different hydration times on calcined cement mass basis to have a same composition basis to compare the data. The influence of the W/C ratio on the kinetics of the hydration process was done through the quantitative analysis of the combined water of the main hydration products formed in each case. TG and DTG curves data calculated on calcined mass basis of all the results were converted to initial cement mass basis to have an easier way to analyze the influence of the W/C ratio on the free and combined water of the different main hydrated phases. The gypsum content of the pastes was totally consumed in 8 h for all cases. A significant part of the hydration process occurs within the first 14 h of setting and at 24 h the highest hydration degree, indicated by the respective content of formed calcium hydroxide, occurs in the case of the highest initial water content of the paste.  相似文献   

9.
Journal of Thermal Analysis and Calorimetry - The combined effect of temperature and vapor pressure on hydration reactions of three different types of Portland cements was studied using a...  相似文献   

10.
Portland cement have to hydrate in cold climates in some particular conditions. Therefore, a better understanding of cement hydration under low temperatures would benefit the cement-based composites application. In this study, Portland cement was, therefore, kinetically and thermodynamically simulated based on a simple kinetics model and minimization of Gibbs free energy. The results of an evaluation indicate that Portland cement hydration impact factors include the water–cement ratio (w/c), temperature, and specific surface area, with the latter being an especially remarkable factor. Therefore, increasing the specific surface area to an appropriate level may be a solution to speed the delayed hydration due to low temperatures. Meanwhile, the w/c ratio is believed to be controlled under cold climates with consideration of durability. The thermodynamic calculation results suggest that low-temperature influences can be divided into three levels: irrevocable effects (<0 °C), recoverable effects (0–10 °C), and insignificant effects (10–20 °C). Portland cement was additionally measured via X-ray diffraction, thermal gravity analysis, and low-temperature nitrogen adsorption test in a laboratory and comparisons were drawn that validate the simulation result.  相似文献   

11.
12.
13.
In this investigation the effect of addition of magnetite nanoparticles on the hydration characteristics of both ordinary Portland cement (OPC) and high slag cement (HSC) pastes was studied. The cement pastes were prepared using a water/solid (W/S) mass ratio of 0.3 with addition of 0.05, 0.1, and 0.3 % of magnetic fluid Fe3O4 nanoparticles by mass of cement. An aqueous stable magnetic fluid containing Fe3O4 nanoparticles, with a mean diameter in the range of super-paramagnetism, was prepared via co-precipitation method from ferrous and ferric solutions. The admixed magnetite-cement pastes were examined for compressive strength, chemically combined water content, X-ray diffraction analysis, and differential scanning calorimetry. The results of compressive strength revealed that the hardened pastes made from OPC and HSC admixed with different amounts of magnetic fluid have higher compressive strength values than those of the neat cement OPC and HSC cement pastes at almost all ages of hydration. The results of chemically combined water content for the admixed cement pastes showed almost the same general trend and nearly comparable values as those of the neat cement pastes. From the XRD diffractograms obtained for the neat OPC and HSC cement pastes, the main hydration products identified are calcium silicate hydrates, portlandite, and calcium sulfoaluminate hydrates. Addition of magnetic fluid nanoparticles to both of OPC and HSC did not affect the main hydration products of the neat OPC or HSC cement in addition to one main basic difference, namely, the formation of calcium iron hydroxide silicate as a new hydration product with a reasonable hydraulic character.  相似文献   

14.
Cellulose ethers (CE) are introduced in almost all cement-based dry mortars in order to retain water in mortar mass avoiding losing it too quickly by substrate absorption or water evaporation. In this way the workability of the fresh material, the adherence to the substrate and internal-strength characteristics of mortar, render or tile adhesive are improved. One of the side effects of cellulose ethers is the Portland cement hydration delaying. The influence of six commercial cellulose ethers, hydroxyethylmethyl cellulose (HEMC) type, on the hydration of Portland cement CEM I 42.5 R, was followed by thermal analysis (TG and DTA curves). Three of these cellulose ethers are unmodified, and have different viscosities, while three of them have the same viscosity but differ in the degree of modification (unmodified, one with medium modification and one with high modification). The interest of dry mortars producers for the effects of these cellulose ethers, is generated by the wide offer available on the market and by the absence of systematic data on the effect of different viscosities and degrees of modification on dry mortars properties. In order to quantify the effect of the CE on the cement hydration, the surface area of the endothermic effect corresponding to the dehydration of portlandite (Ca(OH)2), formed after 1, 3, and 7 days of hydration, was defined. It was noted that the proportion of Ca(OH)2 in samples containing CE after 1 day was 30–40 % lower than in reference sample. After 3 and 7 days of hydration the proportion of Ca(OH)2 in samples containing CE approaches that of reference sample (10–20 % less). For the same period of hydration, the different viscosity, and different degree of modification of cellulose ethers cause variations in narrow limits of the proportion of Ca(OH)2, and the degree of cement hydration, respectively.  相似文献   

15.
Portland cement hydration has been investigated by emanation thermal analysis (ETA), based on the application of radon atoms as radioactive indicators. This method enabled us to characterize continuously changes in the microstructure of the cement paste at selected temperatures. The numerical simulation of time dependences of the emanating rate during cement hydration was carried out. An agreement between the mathematical model and experimental results of the ETA was obtained.  相似文献   

16.
Journal of Thermal Analysis and Calorimetry - The article analyses the peculiarities of the combined effect on hydration process of the following pozzolanic additives: metakaolin waste (MW),...  相似文献   

17.
G-Oil well cement has been cured under standard and hydrothermal conditions with different steam pressures and temperatures. Compressive strength, pore structure parameters, microstructure, and hydrated products were evaluated after 7 days curing by using SEM, MIP, and simultaneous TGA/DSC. Obtained results showed that 7 days aged sample cured under standard conditions has the highest compressive strength with compact pore structure and hydrated products similar to those found after hydration of Ordinary Portland cement. With increasing temperature and pressure from standard conditions (25 °C, 10125 Pa) to hydrothermal ones (150 °C and 0.3 MPa, 200 °C and 1.2 MPa), compressive strength has drastically decreased from 77.5 ± 2.0 to 20.5 ± 1.0 MPa due to the transformation of original hydrated products (C–S–H) to crystallized α-C2SH and C6S2H3. The crystallization has led, under hydrothermal curing, to the increase of permeability and pore structure depletion. The final compressive strength after curing for 7 days at 150 °C (51.8 ± 2.0 MPa) and 200 °C (20.5 ± 1.0 MPa), which significantly exceeds the recommended values of 3.45 MPa according to API to hold many casings of oil wells is questionable for application in geothermal ones.  相似文献   

18.
The hydration of ordinary Portland cement (OPC) blended with blast-furnace slag (BFS) is a complex process since both materials have their own reactions which are, however, influenced by each other. Moreover, the effect of the slag on the hydration process is still not entirely known and little research concerning the separation of both reactions can be found in the literature. Therefore, this article presents an investigation of the hydration process of mixes in which 0–85% of the OPC is replaced by BFS. At early ages, isothermal, semi-adiabatic and adiabatic calorimetric measurements were performed to determine the heat of hydration. At later ages, thermogravimetric (TG) analyses are more suitable to follow up the hydration by assessment of the bound water content w b. In addition, the microstructure development was visualized by backscattered electron (BSE) microscopy. Isothermal calorimetric test results show an enhancement of the cement hydration and an additional hydration peak in the presence of BFS, whilst (semi-)adiabatic calorimetric measurements clearly indicate a decreasing temperature rise with increasing BFS content. Based on the cumulative heat production curves, the OPC and BFS reactions were separated to determine the reaction degree Q(t)/Q (Q = cumulative heat production) of the cement, slag and total binder. Moreover, thermogravimetry also allowed to calculate the reaction degree by w b(t)/w b∞. The reaction degrees w b(t)/w b∞, Q(t)/Q and the hydration degrees determined by BSE-image analysis showed quite good correspondence.  相似文献   

19.
Thermogravimetry (TG) and derivative thermogravimetry (DTG) have been used by the authors as very effective tools to study hydration steps of cements used for solidification/stabilization of tanning wastes. The present paper presents a method which was applied to separate the peaks shown by DTG curves of type II Portland cement pastes, analyzed at different times during the first 4 weeks of setting. Through a specific software a more detailed study of the evolution of the cement hydration may be done, which allows the measurement of the amount of hydrated water present in tobermorite gel as well as in ettringite, which are the main phases formed from the original components of the cement. The number of moles of water present in the ettringite phase calculated by the method is in very good agreement with the values found in the literature, validating the method to calculate the same parameter in tobermorite gel. In the latter case the water content decreases significantly during the first day of hydration, then remains at a constant value over the rest of the analyzed period.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

20.
Thermal analysis (DTA) was used for monitoring the proportions of Ca(OH)2 formed at the hydration of simple Portland cement (CEM I 42.5 R) samples, and cement samples with 0.5% addition of unmodified hydroxypropyl methyl cellulose (HPMC), respectively, with the addition of starch ether and polyacrylamide modified HPMC. The proportions of Ca(OH)2 formed after 1, 3, 7, and 28?days of hydration were assessed by the peak areas of the endothermic effect at the temperature range of 493?C503?°C, caused by the Ca(OH)2 decomposition. The results obtained based on thermal analysis reflect very well the correlation between the Ca(OH)2 proportions in the samples after different hydration periods and the retarding effect of the hydration processes caused by the cellulose ether's addition. This retarding effect is also evidenced by the setting times of the studied samples and the evolution of their mechanical strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号