首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary The experimental results obtained for cleavage of cobalt-tin bonds by means of NaFe(CO)2Cp, LiBHEt3 and Ph3SnLi can be explained by a one-electron transfer mechanism leading to a triorganostannyl radical, which can invert before reacting with another radical to give the reaction products.This paper is Part 75 of the series Organometallic Compounds. For Part 74, see ref. (1).  相似文献   

3.
4.
1,3-dithianyl cation radicals having alpha-hydroxy-neopentyl or similar groups in position 2, which are generated via oxidative photoinduced electron transfer, undergo anomalous fragmentation necessitating refinement of the accepted mechanism. Experimental and computational data support a rationale in which proton abstraction from the hydroxy group in the initial cation radical does not cause a Grob-like fragmentation, but rather produces a neutral radical species, the alkoxy radical, that undergoes fragmentation in either direction, i.e., cleaving the C-C bond to dithiane or to the tertiary alkyl group.  相似文献   

5.
6.
The kinetic features of functionalization of natural polysacharide, pectin, by liquid-phase oxidation were studied.  相似文献   

7.
Density functional theory has been applied to the investigation of the reductive cleavage mechanism of methylcobalamin (MeCbl). In the reductive cleavage of MeCbl, the Co-C bond is cleaved homolytically, and formation of the anion radical ([MeCbl]*-) reduces the dissociation energy by approximately 50%. Such dissociation energy lowering in [MeCbl]*- arises from the involvement of two electronic states: the initial state, which is formed upon electron addition, has dominant pi*corrin character, but when the Co-C bond is stretched the unpaired electron moves to the sigma*Co-C state, and the final cleavage involves the three-electron (sigma)2(sigma*)1 bond. The pi*corrin-sigma*Co-C states crossing does not take place at the equilibrium geometry of [MeCbl]*- but only when the Co-C bond is stretched to 2.3 A. In contrast to the neutral cofactor, the most energetically efficient cleavage of the Co-C bond is from the base-off form. The analysis of thermodynamic and kinetic data provides a rationale as to why Co-C cleavage in reduced form requires prior departure of the axial base. Finally, the possible connection of present work to B12 enzymatic catalysis and the involvement of anion-radical-like [MeCbl]*- species in relevant methyl transfer reactions is discussed.  相似文献   

8.
Density functional theory (B3LYP) has been applied to large models of the Fe(II)-Cu(I) binuclear center in cytochrome oxidase, investigating the mechanism of O-O bond cleavage in the mixed valence form of the enzyme. To comply with experimental information, the O(2) molecule is assumed to be bridging between iron and copper during the O-O bond cleavage, leading to the formation of a ferryl-oxo group and a cupric hydroxide. In accord with previous suggestions, the calculations show that it is energetically feasible to take the fourth electron needed in this reaction from the tyrosine residue that is cross-linked to one of the copper ligands, resulting in the formation of a neutral tyrosyl radical. However, the calculations indicate that simultaneous transfer of an electron and a proton from the tyrosine to dioxygen during bond cleavage leads to a barrier more than 10 kcal/mol higher than that experimentally determined. This may be overcome in two ways. If an extra proton in the binuclear center assists in the mechanism, the calculated reaction barrier agrees with experiment. Alternatively, the fourth electron might initially be supplied by a residue in the vicinity other than the tyrosine.  相似文献   

9.
The alkane elimination reaction between Salen((t)Bu)H(2) ligands and diethylaluminum bromide was used to prepare three Salen aluminum bromide compounds salen((t)Bu)AlBr (1) (salen = N,N'-ethylenebis(3,5-di-tert-butylsalicylideneimine)), salpen((t)Bu)AlBr (2) (salpen = N,N'-propylenebis(3,5-di-tert-butylsalicylideneimine)), and salophen((t)Bu)AlBr (3) (salophen = N,N'-o-phenylenenebis(3,5-di-tert-butylsalicylideneimine)). The compounds contain five-coordinate aluminum either in a distorted square pyramidal or a trigonal bipyramidal environment. The bromide group in these compounds could be displaced by triphenylphosphine oxide or triphenyl phosphate to produce the six-coordinate cationic aluminum compounds [salen((t)Bu)Al(Ph(3)PO)(2)]Br (4), [salpen((t)Bu)Al(Ph(3)PO)(2)]Br (5), [salophen((t)Bu)Al(Ph(3)PO)(2)]Br (6), and [salophen((t)Bu)Al[(PhO)(3)PO)](2)]Br (7). All the compounds were characterized by (1)H, (13)C, (27)Al, and (31)P NMR, IR, mass spectrometry, and melting point. Furthermore, compounds 1-3 and 5-7 were structurally characterized by single-crystal X-ray diffraction. Compounds 1-3 dealkylated a series of organophosphates in stoichiometric reactions by breaking the ester C-O bond. Also, they were catalytic in the dealkylation reaction between trimethyl phosphate and added boron tribromide.  相似文献   

10.
11.
本文研究了在四氟硼酸银存在下, 硫醚与碘甲烷室温下发生碳硫键选择性断裂反应。研究结果表明: 只有当二苄基硫醚的苯环对位连有强的供电子基团甲氧基时, 方可发生碳硫键的断裂。提出了一个离子型反应机理且碳硫键的断裂分三步完成。首先, 硫醚与甲基化试剂反应生成甲基锍盐; 继而, 此锍离子离解成由苄基碳正离子和硫醚组成的离子-偶极集合物; 最后, 甲基化试剂再进攻集合物中的硫醚, 从而导致碳硫键的断裂。  相似文献   

12.
The electrochemical (EC) reduction mechanism of methylcobalamin (Me-Cbl) in a mixed DMF/MeOH solvent in 0.2 M tetrabutylammonium fluoroborate electrolyte was studied as a function of temperature and solvent ratio vs a nonaqueous Ag/AgCl/Cl(-) reference electrode. Double-potential-step chronoamperometry allowed the rate constant of the subsequent homogeneous reaction to be measured over the temperature range from 0 to -80 degrees C in 40:60 and 50:50 DMF:MeOH ratios. Activation enthalpies are 5.8 +/- 0.5 and 7.6 +/- 0.3 kcal/mol in the 40:60 and 50:50 mixtures of DMF/MeOH, respectively. Digital simulation and curve-fitting for an EC mechanism using a predetermined homogeneous rate constant of 5.5 x 10(3) s(-1) give E degrees' = -1.466 V, k degrees = 0.016 cm/s, and alpha = 0.77 at 20 degrees C for a quasi-reversible electrode process. Digital simulation of the results of Lexa and Savéant (J. Am. Chem. Soc. 1978, 100, 3220-3222) shows that the mechanism is a series of stepwise homogeneous equilibrium processes with an irreversible step following the initial electron transfer (ET) and allows estimation of the equilibrium and rate constants of these reactions. An electron coupling matrix element of H(kA) = (4.7 +/- 1.1) x 10(-4) eV ( approximately 46 J/mol) is calculated for the nonadiabatic ET step for reduction to the radical anion. A reversible bond dissociation enthalpy for homolytic cleavage of Me-Cbl is calculated as 31 +/- 2 kcal/mol. The voltammetry of the ethyl-, n-propyl-, n-butyl-, isobutyl-, and adenosyl-substituted cobalamin was studied, and estimated reversible redox potentials were correlated with Co-C bond distances as determined by DFT (B3LYP/ LANL2DZ) calculations.  相似文献   

13.
High pressure limits of thermal rate constants of four C-C bond beta scission reactions of propyl, 1-butyl, 2-butyl and isobutyl radicals were calculated using the canonical variational transition state theory (CVT) with a multi-dimensional small-curvature tunneling (SCT) correction over the temperature range of 300-3000 K. The CCSD(T)/cc-pVDZ//BH&HLYP/cc-pVDZ method was used to provide necessary potential energy surface information. Rate constants for these reactions were used to extrapolate rate constants for reactions in larger alkyls where experimental data are available using the Reaction Class Transition State Theory (RC-TST). Excellent agreement with experimental data confirms the validity of the RC-TST methodology and the accuracy of the calculated kinetic data in this study.  相似文献   

14.
Irradiation of 9,10-dicyanoanthracene (DCA) or p-chloranil in the presence of E-1-benzylidene-2-phenylcyclopropane (E-5) in CH(2)Cl(2) causes E-5 to undergo methylenecyclopropane rearrangement. An adduct, Z-7, between DCA and 5 firmly supports the involvement of a bifunctional trimethylenemethane radical cation. In contrast, incorporation of E-5 into HZSM-5 produces trans,trans-1,4-diphenyl-1,3-butadiene radical cation sequestered in the HZSM-5 interior, tt-8(.+)@HZSM-5, identified by ESR and diffuse reflectance spectroscopy. In addition, low yields of tt-8, its cis,trans-isomer (ct-8), and 1-phenyl-1,2-dihydronaphthalene (9) were isolated from the supernatant solution. The sharp contrast between the photoinduced electron-transfer reaction with photosensitizers in solution and the spontaneous reaction with redox-active acidic zeolite offers the prospect of further zeolite-induced regiodivergent reactions in a range of additional substrates.  相似文献   

15.
Bromoacetyl chloride photodissociation has been interpreted as a paradigmatic example of a process in which nonadiabatic effects play a major role. In molecular beam experiments by Butler and co-workers [J. Chem. Phys. 95, 3848 (1991); J. Chem. Phys. 97, 355 (1992)], BrCH2C(O)Cl was prepared in its ground electronic state (S0) and excited with a laser at 248 nm to its first excited singlet state (S1). The two main ensuing photoreactions are the ruptures of the C-Cl bond and of the C-Br bond. A nonadiabatic model was proposed in which the C-Br scission is strongly suppressed due to nonadiabatic recrossing at the barrier formed by the avoided crossing between the S1 and S2 states. Recent reduced-dimensional dynamical studies lend support to this model. However, another interpretation that has been given for the experimental results is that the reduced probability of C-Br scission is a consequence of incomplete intramolecular energy redistribution. To provide further insight into this problem, we have studied the energetically lowest six singlet electronic states of bromoacetyl chloride by using an ab initio multiconfigurational perturbative electronic structure method. Stationary points (minima and saddle points) and minimum energy paths have been characterized on the S0 and S1 potential energy surfaces. The fourfold way diabatization method has been applied to transform five adiabatic excited electronic states to a diabatic representation. The diabatic potential energy matrix of the first five excited singlet states has been constructed along several cuts of the potential energy hypersurfaces. The thermochemistry of the photodissociation reactions and a comparison with experimental translational energy distributions strongly suggest that nonadiabatic effects dominate the C-Br scission, but that the reaction proceeds along the energetically allowed diabatic pathway to excited-state products instead of being nonadiabatically suppressed. This conclusion is also supported by the low values of the diabatic couplings on the C-Br scission reaction path. The methodology established in the present study will be used for the construction of global potential energy surfaces suitable for multidimensional dynamics simulations to test these preliminary interpretations.  相似文献   

16.
The relevant excited states involved in the photolysis of methylcobalamin (MeCbl) have been examined by means of time-dependent density functional theory (TD-DFT). The low-lying singlet and triplet excited states have been calculated along the Co-C bond at the TD-DFT/BP86/6-31g(d) level of theory in order to investigate the dissociation process of MeCbl. These calculations have shown that the photodissociation is mediated by the repulsive 3(sigmaCo-C --> sigma*Co-C) triplet state. The key metastable photoproduct involved in Co-C bond photolysis was identified as an S1 state having predominantly dCo --> pi*corrin metal-ligand charge transfer (MLCT) character.  相似文献   

17.
On the basis of measurements of rate constants for carbon-carbon bond cleavage of tetrakis(4-methylphenyl)ethanone cation radicals generated by pulsed laser excitation with sensitizers in solution, an SN1-type mechanism for the bond cleavage is proposed.  相似文献   

18.
Various reaction paths of the P-C bond cleavage of alpha-aminophosphonates in acidic media, resulting in the derivatives of phosphonic acid, has been investigated using density functional level of theories in the gas phase as well as in aqueous medium. Dimethyl (alpha-anilinobenzyl)phosphonate has been used as the model molecule and our investigation confirms a three steps process including protonation, P-C bond cleavage, and the transformation of the products from the final transition state (imine cation and H-phosphonate) through hydrolysis. The most favorable reaction path starts from the amino group protonation, followed by a proton transfer through N-H...O(P) hydrogen bond, and the P-C bond cleavage from the resulting protonated structure. Explicit inclusion of water molecules indicated that two waters are needed for the P-C bond cleavage, and the calculated mechanistic paths in this hydrated model are similar to those of the aqueous solvation model.  相似文献   

19.
Irradiation of phenothiazine cation radical, Ph.+, with 1,1-diphenylethylene, DPE, causes its reduction to Ph and oxidation of DPE. Cyclodimeric products are formed from DPE.+.  相似文献   

20.
Xian M  Zhu XQ  Lu J  Wen Z  Cheng JP 《Organic letters》2000,2(3):265-268
[reaction: see text] The first series of O-NO bond dissociation enthalpies was determined in solution for eight O-nitrosyl carboxylate compounds by direct titration calorimetry with a thermodynamic cycle. The derived bond energy data may serve as a quantitative guide to predict the NO binding and releasing abilities of the related amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号