首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a novel soil-density determination method is presented. The classic method (sampling, drying, mass measuring, etc.) can give proper results for the given problem but the standard methodology requires a lot of practical effort. While the soil is generally inhomogeneous, the measured density values of the soil sample applies only for the sample itself. On the entire soil territory this density can be interpreted only with significant errors. For a better mapping of the soil-density distribution expansive measurements are required. The task is complicated by the determination of density distribution in deeper layers of the soil as well. Our work presents a simpler method to determine the soil-density distribution in deeper layers with the use of cone penetration test (CI) results. With this method we can obtain detailed results of the soil-density distribution in deeper layers that may help further calculations for soil deformation analysis such as an exact determination of the soil sinkage below a tire track.  相似文献   

2.
Study was conducted in a laboratory glass-sided soil bin with dry compact loam soil with 5.2% (d.b.) moisture content. The specific objective of this study was to determine the effects of flat rigid tine rake angle (forward angle between tine face and horizontal soil surface) and aspect ratio (tine width/tine depth) on soil reactions. The tine was moved in the soil in a quasi-static condition and soil reactions were recorded using L-shaped force transducers. Corresponding soil failure patterns were observed through a glass window. Tine rake angles of 50°, 90° and 130° were used. The effects of aspect ratio were studied by varying both width and depth of the tines. Individual effects of width and depth were investigated by maintaining a constant aspect ratio of 2.0 but varying width and depth. Observations indicated that soil reactions are affected by tine design parameters. For all tine rake angles and aspect ratios, soil reactions were observed to be cyclic in nature and could be matched well with corresponding soil failure patterns. The horizontal and vertical soil reactions were in phase. Investigations into the individual effects of tine width and depth revealed that the aspect ratio alone cannot account for changes in soil reactions. The effects are mainly due to the individual changes in width and depth.  相似文献   

3.
The cone penetrometer is widely used in tillage and off-road mobility research as an indicator of soil strength and density characteristics. Light-weight, manually operated units are especially useful in recording cone index determinations at remote field locations. Such units permit a single operator to measure and record penetration force vs depth in graphic form. However, the interpretation and analysis of such data has remained a tedious manual operation which has limited the number of determinations which are practical for a given field experiment. The system described in this paper allows one person to determine and electronically record penetration force vs depth relationships using a standard cone penetrometer (ASAE S313.1, 1979). A CMOS (complementary metal oxide semiconductor) microprocessor is utilized to sample and digitize analog signals and to record them on a magnetic tape cassette. An identifying code can be associated with each measurement and the microprocessor is subsequently utilized in interpreting cassette-stored data and transmitting it to a remote computer terminal or minicomputer for processing and analysis. Thus, this relatively low-cost system significantly enhances manual acquisition and interpretation of cone penetrometer measurements.  相似文献   

4.
Studies were conducted in a laboratory glass-sided soil bin with dry compact loam soil (c = 0.02 kPa, Φ = 20° and cone index 210 kPa) with the specific objective of observing the effect of flat tine rake angle and aspect ratio on soil failure patterns. The tine was moved in the soil in a quasi-static condition and soil failure patterns were observed through a glass window. Tine rake angles of 50°, 90° and 130° were used while aspect ratio effects were studied by varying both width and depth of the tine. Individual effects of width and depth were investigated by maintaining a constant aspect ratio of 2.0 but varying width and depth. Results obtained indicated that soil failure patterns are affected by tine design parameters. Soil failure patterns were observed to be of progressive shear type in all cases. For 50° rake angle tines, the patterns consisted of inclined shear lines starting from the tine tip and gradually moving upwards towards the horizontal soil surface, intersecting it at an average failure angle of 32°. In the case of 90° rake angle tines, the inclined shear surface was at a distance from the tine tip whereas, for 130° rake angle tines, prismatic-shaped stationary soil wedges were formed adjacent to the tine. Failure angles for the 90° and 130° rake angle tines were almost the same as those for 50° rake angle tines. The results of this study also indicated that aspect ratio alone cannot account for changes in soil failure patterns, their corresponding soil reactions, forward rupture or surcharge profiles. The effects are mainly due to the individual changes in width and depth. There were no distinct zones as described in the passive soil pressure theory. Soil failures were in regular cycles resulting in corresponding variations in the soil reactions on the tines.  相似文献   

5.
Enhancement of wind by bushfire, referred to as bushfire-wind enhancement phenomenon, causes damages to buildings located in bushfire-prone areas by increasing pressure load around the structures. This study focuses on the effects of point source aspect ratio (AR) on the wind enhanced by fire. FireFOAM solver of OpenFOAM platform is used to perform Large Eddy Simulation analysis for different fire source aspect ratios under two different fire source conditions: (i) identical fire intensity (fire heat release rate per unit area) and (ii) identical fire heat release rate conditions. Simulations were performed for three different fire source aspect ratios under these fire source boundary conditions. An appropriate normalization group based on fire source hydraulic diameter was introduced for fire-induced pressure gradient to explain the variation of wind enhancement with fire source aspect ratio. The results reveal that under a constant fire intensity condition, increasing the fire source aspect ratio causes a higher normalized fire-induced pressure gradient which leads to more intensified wind enhancement. In contrast, the increase of fire source aspect ratio while fire heat release rate is kept constant culminates in a reduction in the normalized fire-induced pressure gradient, reducing wind enhancement. Moreover, with the increase of the fire source aspect ratio, the area of counter-rotating vortices (CRV) where maximum wind enhancement occurs is expanded. The results also show that with the increase of fire source aspect ratio, the length of flame attachment to the ground immediately downstream of fire increases. In addition to the longitudinal wind enhancement, the effects of fire source aspect ratio on vertical velocity were also analyzed based on the Richardson number defined by hydraulic diameter and flow reference velocity. The effects of the aspect ratio on flame length were also studied. It was shown as a result of the increase of aspect ratio for one unit, flame length increases by approximately 14% and reduces by 7% under constant fire intensity and constant fire heat release rate condition, respectively.  相似文献   

6.
Effects of aspect ratio on shock-cylinder interaction   总被引:1,自引:0,他引:1  
Interaction of a planar shock wave with a discontinuous SF& elliptic gas cylinder surrounded by air is investigated. Special attention is given to the effects of aspect ratio on wave pattern, interface evolution, and material mixing. An ideal discontinuous two-dimensional gas cylinder is created by the soap film technique in experiments, and the shocked flow is captured by schlieren photography combined with a high-speed video camera. The surface of the gas cylinder is clear enough to observe the shock motions, and the distinct interface boundaries allow us to extract more details. As aspect ratio varies, the shock focusing process is quite different. For the prolate gas cylinder, an inward jet is produced although an internal shock focusing firstly occurs. The inward jet has never been observed in membraneless prolate ellipse experiments probably because the inward jet is so faint due to less vorticity generation on membraneless interface that it is difficult to be observed. For the oblate gas cylinder, a secondary vortex pair, which has not been described clearly in previous work, is derived from the downstream interface. The material lines at early stages are extracted from experiments, which grow faster as aspect ratio increases. The in terfacial area, the mean volume fraction and the mixing rate are presented from computations, and the results show that the increase of aspect ratio promotes the mixing between gases.  相似文献   

7.
Further experiments on features of the vortex shedding from tapered flat plates normal to an airstream are described. The work extends that of Castro and Rogers (2002) and concentrates on the study of the effects of varying the spanwise aspect ratio for a fixed shape plate, by appropriate adjustment of end-plates, and of the nature of the shedding as the degree of taper becomes very large, so that the body is more like a triangular plate—e.g. an isosceles triangle—than a slightly tapered plate. With the taper ratio TR defined as the ratio of plate length to average cross-stream width, the paper concentrates on the range 0.58<TR<60. Reynolds numbers, based on the average plate width, exceed 104. It is confirmed that for a small enough taper ratio the geometrical three-dimensionality is sufficiently strong that all signs of periodic vortex shedding cease. For all other cases, however, the flow at different locations along the span can vary substantially, depending on taper. There appear to be at least four different regimes, each appropriate for a different range of taper ratio. These various regimes are described.List of symbols AR Spanwise aspect ratio, W/dav - d Local width of the plate - dav Average width of the plate between the end-plates (or end-plate and tip or wall and tip), m - d0 Base width of the plate (i.e. at z=0), m - f Shedding frequency, Hz - H Dimension of the tunnel cross-section normal to the plate symmetry axis, m - He Splitter plate height (see Fig. 1) - L Total length of plate (between base, where d=d0, and tip, where d=0), m - Le,Lf End plate dimensions (see Fig. 2) - Std Local Strouhal number, fd/U - St0 Strouhal number based on base width, fd0/U - TR Taper ratio, L/dav - U Measured free-stream velocity, m/s - W Spanwise distance between ends of plate - z distance along span, measured from base of plate - z =z/L - z Spanwise width of a constant-frequency cell  相似文献   

8.
9.
The influence of an asymmetrically mounted, single tripwire on the shedding and wake characteristics of a vertical, surface-mounted finite circular cylinder is investigated experimentally. Height-to-diameter aspect ratios of 3 and 6 are considered. It is shown that a critical position for the tripwire exists, which is characterised in an abrupt change in the shedding frequency and wake structure. Results further suggest that the tripwire can strengthen 2D wake properties. The influence of the aspect ratio is due to tip-wake flow interactions and thus differs fundamentally from two-dimensional geometries.  相似文献   

10.
Previous studies at Yakima Training Center (YTC), in Washington State, suggest freeze-thaw (FT) cycles can ameliorate soil compacted by tracked military vehicles [J. Terramechanics 38 (2001) 133]. However, we know little about the short-term effects of soil freezing over a single winter. We measured bulk density (BD), soil penetration resistance (SPR), and steady-state runoff rates in soil newly tracked by an Abrams tank and in uncompacted soil, before and after a single winter at YTC. We similarly measured BD, SPR and saturated hydraulic conductivity (kfs) in simulated tank tracks at another site near Lind Washington. Average BD was significantly greater in tank ruts at YTC and in simulated tracks at the Lind site than in uncompacted soil soon after tracking and did not change significantly during the winter of 1997–1998. Measurements of SPR were strongly influenced by soil moisture. When soil was moist or tracks were newly formed, SPR was significantly higher in tank ruts than in uncompacted soil from the surface to a depth of about 10–15 cm. The greatest average SPR in compacted soil was observed between 4 and 6 cm depth. We observed less difference in SPR between tank ruts and uncompacted soil near-surface at YTC as the time after trafficking increased. We observed highest SPR ratios (compacted rut:undisturbed) in fresh tracks near the surface, with lower ratios associated with increasing track age or soil depth, indicating that some recovery had occurred at YTC near-surface. However, we did not observe a similar over-winter change in SPR profiles at the Lind site. Rainfall simulator data from YTC showed higher steady-state runoff rates in tank ruts than over uncompacted soil both before and after winter. However, more time was required to reach steady-state flow in tank ruts and the proportion of runoff was slightly lower in May 1998 than in August 1997. At the Lind site, kfs was lower in newly compacted soil than in one-year old compacted soil or uncompacted soil. Our data suggest that indices of water infiltration such as steady-state runoff rates or kfs, are more sensitive indicators of soil recovery after compaction than are BD or SPR.  相似文献   

11.
The changes in soil bulk density resulting from passage of tractor tires were measured for two typical agricultural soils at various water contents. These density changes were used to calculate relative compaction and variation in porosity with wheel sinkage. The results were displayed in graph form, and conclusions are drawn concerning achieving optimum porosity for various initial bulk densities and water contents.  相似文献   

12.
The general trend in soil protection is to reduce the detrimental soil compaction by loaded wheels of power and transport equipment. This paper reports on the progress in research of soil compaction risk assessment by means of Compaction Capacity (CC) tire rating originally introduced as compaction number (CN) rating [Grečenko A. Tire load rating to reduce soil compaction. J Terramech 2003;40:97–115]. The CC rating evaluates soil dry density along a vertical column 20–50 cm below the ground surface. The unique feature of the CC approach is that it converts laboratory compaction measurements directly to soil compaction profiles under evaluated tires without touching the stresses in the ground. The laboratory soil compaction is done with round pressure plate and similarly the tire contact area is represented by a virtual plate loaded by the same mean contact pressure. This paper describes laboratory testing procedures with fundamentals of data conversion and gives examples of CC rating application.  相似文献   

13.
Cylindrical soil probes measuring 300 mm in diameter by 300 mm in height were prepared in the laboratory using samples extracted from a well drained loamy soil (FAO classification: Vertic Luvisol). These probes were compacted at different moisture contents [3, 6, 9, 12, 15 and 18 (% w/w)] and using different compaction energies (9.81, 49.05, 98.1 and 981 J). The soil penetration resistance was determined by means of the ASAE 129 mm2 base area cone and seven other different cones with base sizes of 175, 144, 124, 98, 74, 39 and 26 mm2. The variability of the penetration resistance measurements increased as the size of the cone decreased. Nevertheless, the penetration resistance values proved to be independent of the cone used, as long as the size of the latter was equal to or greater than 98 mm2. This confirms the possibility of using cones with areas smaller than the ASAE standard when measurements are to be carried out in dry soils with high levels of mechanical resistance. The experimental data were used to develop an empirical model, a linear additive model on a log–log plane, capable of estimating soil bulk density depending on soil penetration resistance, soil moisture content and depth. This model has provided good results under field conditions and has allowed soil bulk density profiles and accumulated water profiles to be accurately estimated.  相似文献   

14.
This article presents experiments conducted with two single rectangular mini-channels of same hydraulic diameter (1.4 mm) and different aspect ratios for conditions of horizontal boiling flow. The Forane® 365 HX used was subcooled (ΔTsub = 15 °C) for all the boiling curves presented in the paper. Local heat transfer coefficients were measured for heat flux ranging from 25 to 62 kW m−2 and mass flux from 200 kg m−2 s−1 to 400 kg m−2 s−1. The boiling flows were observed with two different cameras (depending on the flow velocity) through a visualization window. The flow patterns in the two channels were compared for similar conditions. The results show that the boiling heat transfer coefficient and the pressure drop values are different for the two single mini-channels. For low heat flux condition, the channel with lowest aspect ratio (H/W = 0.143) has a higher heat transfer coefficient. On the other hand, for high heat flux condition, the opposite situation occurs, namely the heat transfer coefficient becomes higher for the channel with highest aspect ratio (H/W = 0.43). This is probably due to the earlier onset of dryout in the channel with lowest aspect ratio. For the two cases of heating, the pressure drop for the two-phase flow remains lower for the channel with lowest aspect ratio. These results show that the aspect ratio plays a substantial role for boiling flows in rectangular channels. As for single-phase flows, the heat transfer characteristics are significantly influenced (even though the hydraulic diameter remains the same) by this parameter.  相似文献   

15.
We use two different dye injection approaches, in two different water tunnels, to visualize the formation and subsequent evolution of leading-edge vortices and related separated structures, for a pitching low aspect ratio plate. The motion is a smoothed linear pitch ramp from 0° to 40° incidence, brief hold, and return to 0°, executed at reduced pitch rates ranging from 0.1 to 0.35 and about various pivot locations. All cases evince a leading edge vortex with pronounced axial flow, which leads to formation of large-scale, three-dimensional flow structures, culminating in a large vortical structure centered at the wing symmetry plane. Pitch is also compared to plunge, where the plunge-induced angle of attack is taken as the geometric pitch incidence angle, ignoring pitch-rate effects. At successively increasing values of convective time C/U, the three-dimensional patterns of the flow structure are remarkably similar for the pitching and plunging motions. The similarity of these patterns persists, though they are shifted in time, for variation of either the location of the pitching axis or the dimensionless pitch rate.  相似文献   

16.
Morphology as well as kinematics is a critical determinant of performance in flapping flight.To understand the effects of the structural traits on aerodynamics of bioflyers,three rectangular wings with aspect ratios(AR)of1,2,and 4 performing hovering-like sinusoidal kinematics at wingtip based Reynolds number of 5 300 are experimentally investigated.Flow structures on sectional cuts along the wing span are compared.Stronger K-H instability is found on the leading edge vortex of wings with higher aspect ratios.Vortex bursting only appears on the outer spanwise locations of high-aspect-ratio wings.The vortex bursting on high-aspect-ratio wings is perhaps one of the reasons why bio-flyers normally have low-aspect-ratio wings.Quantitative analysis exhibits larger dimensionless circulation of the leading edge vortex(LEV)over higher aspect ratio wings except when vortex bursting happens.The average dimensionless circulation of AR1 and AR2 along the span almost equals the dimensionless circulation at the 50%span.The flow structure and the circulation analysis show that the sinusoidal kinematics suppresses breakdown of the LEV compared with simplified flapping kinematics used in similar studies.The Reynolds number effect results on AR4 show that in the current Re range,the overall flow structure is not sensitive to Reynolds number.  相似文献   

17.
The effects of the aspect ratio on unsteady solutions through the curved duct flow are studied numerically by a spectral based computational procedure with a temperature gradient between the vertical sidewalls for the Grashof number 100 ≤ Gr ≤ 2 000. The outer wall of the duct is heated while the inner wall is cooled and the top and bottom walls are adiabatic. In this paper, unsteady solutions are calculated by the time history analysis of the Nusselt number for the Dean numbers Dn = 100 and Dn = 500 and the aspect ratios 1≤γ≤ 3. Water is taken as a working fluid (Pr =7.0). It is found that at Dn = 100, there appears a steady-state solution for small or large Gr. For moderate Gr, however, the steady-state solution turns into the periodic solution if γ is increased. For Dn = 500, on the other hand, it is analyzed that the steady-state solution turns into the chaotic solution for small and large Gr for any γ lying in the range. For moderate Gr at Dn = 500, however, the steady-state flow turns into the chaotic flow through the periodic oscillating flow if the aspect ratio is increased.  相似文献   

18.
Imbibition in glass micromodels for air-mercury and water-oil systems occurs by wetting phase (wp) cluster growth and frontal drive processes. Lower capillary number and higher wetting phase (wp) saturation at the start of imbibition favour cluster growth.Imbibition experiments for both fluid systems show that the rules of nwp withdrawal are related to pore size and to fluid topology as well as to aspect ratio. The emptying of a pore is favoured by small size, small aspect ratio (size rules), and fewer connected throats occupied by nonwetting phase (nwp) (fluid topology rules).The relative importance of fluid topology compared with pore size in determining the sequence of nwp withdrawal from pores is affected by the initial nwp saturation, pore size variability, pore-throat size ratio, pore and throat shape and contact angle. High initial nwp saturation, small variability of pore size and small pore-throat diameter ratio are all factors which increase the effects of fluid topology in determining nwp withdrawal sequence. Under these conditions, nwp displacement efficiency is larger because withdrawal occurs first from dead-end branches without breaking the continuity of the nwp conducting pathways to the nwp sink. The high nwp displacement efficiency obtained in unconsolidated sands may be explained by the importance of topology rules during imbibition in these low aspect ratio media.Roman Letters D effective diameter of pore or throat given by 2 ÷F()(1/x + 1/y),m - F() nondimensional term which varies as a function of cross-sectional shape (Lenormandet al., 1983) - L external dimension of the network (width or length), m - N ca capillary number in the network, dimensionless - nwp nonwetting phase - P any capillary pressure, Pa - P I1 apillary pressure for nwp to withdraw from a pore which has one connected throat occupied by nwp, Pa - P I2 capillary pressure for nwp to withdraw from a pore which has two adjacent connected throats occupied by nwp, Pa - Q total volume flow rate in the network, m3/s - S wi percent of pore volume occupied by wp at the end of drainage and start of imbibition, dimensionless - S ni percent of pore volume occupied by nwp at the end of drainage and start of imbibition, i.e. 100 -S wi, dimensionless - S nr percent of pore volume occupied by trapped nwp at the end of imbibition, dimensionless - v velocity, m/s - wp wetting phase - X I diameter ofI2 interface in plan, m - X P diameter of pore in plan, m - X T width of throat, m - Y P depth of pore, m - Y T depth of throat, m - Z number of throats connected to each pore (coordination number) Greek Letters interfacial tension, N/m - contact angle, degrees - viscosity, Pa · s  相似文献   

19.
This work studies the macroscopic and microscopic behaviors of ellipsoids under triaxial tests using 3D discrete element method (DEM) simulation. To avoid the boundary effect, a novel stress servo-controlled periodic boundary condition is proposed to maintain the confining pressure of samples during testing. The shape features of ellipsoids are investigated, including the aspect ratio of elongated/oblate ellipsoids and the initial arrangement directions of ellipsoids. The macroscopic properties of ellipsoidal particle samples, such as the deviatoric stress, volumetric strain, internal friction angle, as well as dilatancy angles are explored. Elongated and oblate ellipsoids with varying aspect ratios are investigated for the occurrence of stick-slips. In addition, it is demonstrated that the initial arrangement direction has a significant impact on the coordination number and contact force chains. The corresponding anisotropy coefficients of the entire contact network are analyzed to probe the microscopic roots of macroscopic behavior.  相似文献   

20.
Soil compaction can occur due to machine traffic and is an indicator of soil physical structure degradation. For this study 3 strain transducers with a maximum displacement of 5 cm were used to measure soil compaction under the rear tire of MF285 tractor. In first series of experiments, the effect of tractor traffic was investigated using displacement transducers and cylindrical cores. For the second series, only strain transducers were used to evaluate the effect of moisture levels of 11%, 16% and 22%, tractor velocities of 1, 3 and 5 km/h, and three depths of 20, 30 and 40 cm on soil compaction, and soil behavior during the compaction process was investigated. Results showed that no significant difference was found between the two methods of measuring the bulk density. The three main factors were significant on soil compaction at a probability level of 1%. The mutual binary effect of moisture and depth was significant at 1%, and the interaction of moisture, velocity, and depth were significant at 5%. The soil was compressed in the vertical direction and elongated in the lateral direction. In the longitudinal direction, the soil was initially compressed by the approaching tractor, then elongated, and ultimately compressed again.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号