首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-scale theory for the swelling biopolymeric media is developed. At the microscale, the solid polymeric matrix interacts with the solvent through surface contact. The relaxation processes within the polymeric matrix are incorporated by modeling the solid phase as viscoelastic and the solvent phase as viscous at the mesoscale. We obtain novel equations for the total stress tensor, chemical potential of the solid phase, heat flux and the generalized Darcy's law all at the mesoscale. The constitutive relations are more general than those previously developed for the swelling colloids. The generalized Darcy's law could be used for modeling non-Fickian fluid transport over a wide range of liquid contents. The form of the generalized Fick's law is similar to that obtained in earlier works involving colloids. Using two-variable expansions, thermal gradients are coupled with the strain rate tensor for the solid phase and the deformation rate tensor for the liquid phase. This makes the experimental determination of the material coefficients easier and less ambiguous.  相似文献   

2.
In a thermodynamic setting for a single phase (usually fluid), the thermodynamically defined pressure, involving the change in energy with respect to volume, is often assumed to be equal to the physically measurable pressure, related to the trace of the stress tensor. This assumption holds under certain conditions such as a small rate of deformation tensor for a fluid. For a two-phase porous medium, an additional thermodynamic pressure has been previously defined for each phase, relating the change in energy with respect to volume fraction. Within the framework of Hybrid Mixture Theory and hence the Coleman and Noll technique of exploiting the entropy inequality, we show how these three macroscopic pressures (the two thermodynamically defined pressures and the pressure relating to the trace of the stress tensor) are related and discuss the physical interpretation of each of them. In the process, we show how one can convert directly between different combinations of independent variables without re-exploiting the entropy inequality. The physical interpretation of these three pressures is investigated by examining four media: a single solid phase, a porous solid saturated with a fluid which has negligible physico-chemical interaction with the solid phase, a swelling porous medium with a non-interacting solid phase, such as well-layered clay, and a swelling porous medium with an interacting solid phase such as swelling polymers.  相似文献   

3.
In the framework of the theory of mixtures, the governing equations of motion of a fluid-saturated poroelastic medium including microstructural (for both the solid and the fluid) and micro-inertia (for the solid) effects are derived. This is accomplished by appropriately combining the conservation of mass and linear momentum equations with the constitutive equations for both the solid and the fluid constituents. The solid is assumed to be gradient elastic, that is, its stress tensor depends on the strain and the second gradient of strain tensor. The fluid is assumed to have an analogous behavior, that is, its stress tensor depends on the pressure and the second gradient of pressure. A micro-inertia term in the form of the second gradient of the acceleration of the solid is also included in the equations of motion. The equations of motion in three dimensions are seven equations with seven unknowns, the six displacement components for the solid and the fluid and the pore-fluid pressure. Because of the microstructural effects, the order of these equations is two degrees higher than in the classical case. Application of the divergence and the rot operations on these equations enable one to study the propagation of plane harmonic waves in the infinitely extended medium separately in the form of dilatational and rotational dispersive waves. The effects of the microstructure and the micro-inertia on the dispersion curves are determined and discussed.  相似文献   

4.
The work input for unsaturated elastic porous media is investigated based on averaged conservation equations for phases, interfaces, and common curves. In this analysis, the interfaces between the air-water interfaces are allowed to move and the surface tension appears explicitly in the analysis. Expressions for the work of the solid alone and for the medium are obtained. Conditions under which the result obtained here for the medium reduces to a more traditional expression are indicated. In this analysis, a form of the solid phase stress tensor, recently derived within the framework of thermodynamically constrained averaging theory for phase and interface properties, is used.  相似文献   

5.
The form of the equilibrium effective stress acting on the solid phase of a porous medium containing two immiscible fluid phases is derived. The derivation makes use of the postulation of the thermodynamics of the system at the macroscale, a scale on the order of tens of pore diameters. The postulation at this scale facilitates the identification of the fraction of the solid surface in contact with each fluid phase as being the appropriate coefficient weighting each of the fluid phase pressures analogous to the Bishop parameter. In addition, the curvature of the surface of the solid phases is shown to impact the pressure exerted on the solid phase by the fluid. For the special case of low saturations when the wetting phase may be considered to be present only as a film on the solid phase, the macroscale disjoining pressure is found to modify the equilibrium form of the effective stress. In addition to the equilibrium effective stress, which is related to the forces acting on the interface between the solid phase and the fluids, the appropriate relation between the fluid pressures at the fluid–fluid interface is obtained. This analysis leads to the expression for the capillary pressure as a function of the phase pressures and the disjoining pressure.  相似文献   

6.
多孔连续体理论框架下的非饱和多孔介质广义有效压力定义和Bishop参数的定量表达式长期以来存在争议,这也影响了对与其直接相关联的非饱和多孔介质广义Biot有效应力的正确预测.基于随时间演变的离散固体颗粒-双联液桥-液膜体系描述的Voronoi胞元模型,利用由模型获得的非饱和颗粒材料表征元中水力-力学介观结构和响应信息,文章定义了低饱和度多孔介质局部材料点的有效内状态变量:非饱和多孔连续体的广义Biot有效应力和有效压力,导出了其表达式.所导出的有效压力公式表明,非饱和多孔连续体的有效压力张量为各向异性,它不仅对非饱和多孔连续体广义Biot有效应力张量的静水应力分量的影响呈各向异性,同时也对其剪切应力分量有影响.文章表明,非饱和多孔连续体中提出的广义Biot理论和双变量理论的基本缺陷在于它们均假定反映非混和两相孔隙流体对固相骨架水力-力学效应的有效压力张量为各向同性.此外,为定义各向同性有效压力张量和作为加权系数而引入的Bishop参数并不包含对非饱和多孔连续体中局部材料点水力-力学响应具有十分重要效应的基质吸力.所导出的非饱和多孔介质广义Biot有效应力和有效压力公式(包括反映有效压力...  相似文献   

7.
Corotational rates in constitutive modeling of elastic-plastic deformation   总被引:1,自引:0,他引:1  
The principal axes technique is used to develop a new hypoelastic constitutive model for an isotropic elastic solid in finite deformation. The new model is shown to produce solutions that are independent of the choice of objective stress rate. In addition, the new model is found to be equivalent to the isotropic finite elastic model; this is essential if both models describe the same material.

The new hypoelastic model is combined with an isotropic flow rule to form an elastic-plastic rate constitutive equation. Use of the principal axes technique ensures that the stress tensor is coaxial with the elastic stretch tensor and that solutions do not depend on the choice of objective stress rate. The flow rule of von Mises and a parabolic hardening law are used to provide an example of application of the new theory. A solution is obtained for the prescribed deformation of simple rectilinear shear of an isotropic elastic and isotropic elastic-plastic material.  相似文献   


8.
In order to build a unified modelling for granular media by means of Eulerian averaged equations, it is necessary to study two contributions in the effective Cauchy stress tensor: the first one concerns solid and fluid matter, including contact and collisions between grains; the second one focuses on the random movements of grains and fluid, similar to Reynolds stress for turbulent flows. It is shown that the point of view of piecewise continuous media already used for two phase flows allows one to derive a constitutive equation for the first contribution, under the form of a partial differential equation. Similarly as for the Reynolds stress in turbulent flows, this equation cannot be written only in terms of averaged quantities without adequate approximations. The structure of the closed equation is discussed with respect to irreversible thermodynamics, and in connection with some already existing models. It is emphasised that numerical simulations by the discrete elements method can be used in order to validate these approximations, through numerical experiments statistically considered. Finally an extension of this approach to the second contribution of the effective Cauchy stress tensor is briefly discussed, showing how the modelling of both contributions have to be coupled.   相似文献   

9.
This paper presents a strain energy density for isotropic hyperelastic materials. The strain energy density is decomposed into a compressible and incompressible component. The incompressible component is the same as the generalized Mooney expression while the compressible component is shown to be a function of the volume invariant J only. The strain energy density proposed is used to investigate problems involving incompressible isotropic materials such as rubber under homogeneous strain, compressible isotropic materials under high hydrostatic pressure and volume change under uniaxial tension. Comparison with experimental data is good. The formulation is also used to derive a strain energy density expression for compressible isotropic neo-Hookean materials. The constitutive relationship for the second Piola–Kirchhoff stress tensor and its physical counterpart, involves the contravariant Almansi strain tensor. The stress stretch relationship comprises of a component associated with volume constrained distortion and a hydrostatic pressure which results in volumetric dilation. An important property of this constitutive relationship is that the hydrostatic pressure component of the stress vector which is associated with volumetric dilation will have no shear component on any surface in any configuration. This same property is not true for a neo-Hookean Green’s strain–second Piola–Kirchhoff stress tensor formulation.  相似文献   

10.
Interfacial conditions for multiphase flows are formulated on the microscale to include the possibility of surface effects. These conditions are then averaged to obtain macroscopic continuum equations which may be used in describing multiphase flows. A transformation is presented whereby the resultant macroscopic equations can be rewritten in a form identical to that which has been developed previously for a multiphase system not influenced by interfacial effects. This transformation is shown to have an impact on the forms of the intraphase stress tensor and heat flux vector in addition to the interphase stress and heat flux terms. Inclusion of interfacial effects is demonstrated to be essential to the proper understanding of phase interaction.  相似文献   

11.
The motion of a suspension of solid magnetized ellipsoids of rotation in a uniform magnetic field is considered. The ellipsoids are assumed to be magnetized along the axes of symmetry. Relaxation processes in the solid phase are not considered. The stress tensor of the suspension is calculated taking into account the rotational Brownian motion of the particles. It is shown that the viscosity tensor contains six independent kinetic coefficients, which are even with respect to the magnetic field. The relation between these coefficients and the field and the ratio of the semiaxes of the ellipsoid is obtained. As an example, the effect of the magnetic field on the symmetrical flow of the suspension in a contractile cylinder is considered.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 75–82, September–October, 1973.  相似文献   

12.
13.
The paper illustrates a biphasic formulation which addresses the dynamic response of fluid saturated porous biphasic media at finite deformations with no restriction on the compressibility of the fluid and of the solid skeleton. The proposed model exploits four state fields of purely kinematic nature: the displacements of the solid phase, the velocity of the fluid, the density of the fluid and an additional macroscopic scalar field, termed effective Jacobian, associated with the effective volumetric deformation of the solid phase.The governing equations are characterized by the property of being all expressed in the reference configuration of the solid phase and by the property of employing only work-conjugate variables, thus avoiding the use of a total Cauchy stress tensor.In particular, the set of governing equations includes a momentum balance equation associated with the effective Jacobian field. This equation, differently from the closure-equations proposed by other authors which express a saturation constraint or a porosity balance, is derived as a stationarity condition on account of a least-action variational principle.  相似文献   

14.
基于描述含液颗粒材料介观结构的Voronoi 胞元模型和离散颗粒集合体与多孔连续体间的介-宏观均匀化过程, 定义饱和与非饱和多孔介质有效应力. 导出了计及孔隙液压引起之颗粒体积变形的饱和多孔介质广义有效应力. 用以定义广义有效应力的Biot 系数不仅依赖于颗粒材料的多孔连续体固体骨架及单个固体颗粒的体积模量(材料参数),同时与固体骨架当前平均广义有效应力及单个固体颗粒的体积应变(状态量) 有关. 提出了描述非饱和多孔介质中非混和固体颗粒、孔隙液体和气体等三相相互作用的具介观结构的Voronoi 胞元模型.具体考虑在低饱和度下双联(binary bond) 模式的摆动(pendular) 液桥系统介观结构. 导出了基于介观水力-力学模型的非饱和多孔介质的各向异性有效应力张量与有效压力张量. 考虑非饱和多孔介质Voronoi 胞元模型介观结构的各向同性情况,得到了与非饱和多孔连续体理论中唯象地假定的标量有效压力相同的有效压力形式.但本文定义的与确定非饱和多孔介质有效应力和有效压力相关联的Bishop 参数由基于三相介观水力-力学模型, 作为饱和度、孔隙度和介观结构参数的函数导出,而非唯象假定.   相似文献   

15.
Nonstationary motions of incompressible viscoelastic Maxwell continuum with a constant relaxation time are considered. Because in an incompressible continuous medium, pressure is not a thermodynamic variable but coincides with the stress-tensor trace to within a factor, it follows that, separating the spherical part from this tensor, one can assume that the remaining part of the stress tensor has zero trace. In the case of an incompressible medium, the equations for the velocity, pressure, and stress tensor form a closed system of first-order equations which has both real and complex characteristics, which complicates the formulation of the initial-boundary-value problem. Nevertheless, the resolvability of the Cauchy problem can be proved in the class of analytic functions. Unique resolvability of the linearized problem was established in the classes of functions of finite smoothness. The class of effectively one-dimensional motions for which the subsystem of three equations is a hyperbolic one was studied. The results of an asymptotic analysis of the latter imply the possible formation of discontinuities during the evolution of the solution. The general system of equations of motion admits an infinite-dimensional Lie pseudo-group which contains an extended Galilean group. The theorem of the invariance of the conditions on the a priori unknown free boundary was proved to obtain exact solutions of free-boundary problems. The problem of deformation of a viscoelastic strip subjected to tangential stresses applied to the free boundary is considered as an example of application of this theorem. In this problem, a scale effect of short-wave instability caused by the absence of diagonal dominance of the stress tensor deviator was found.  相似文献   

16.
It is shown that extended irreversible thermodynamics can be used to account for the shear rate and frequency dependences of several material functions like shear viscosity, first and second normal stress coefficients, dynamic viscosity and storage modulus. Comparison with experimental data on steady shearing and small oscillatory shearing flows is performed. A good agreement between the model and experiment is reached in a wide scale of variation of the shear rate and the frequency of oscillations. The relation between the present model which includes quadratic terms in the pressure tensor and the Giesekus model is also examined.  相似文献   

17.
在Rice的正则结构框架下,推导出基于共轭力的各向异性损伤演化律。其中损伤变量采用二阶裂隙张量,它是固体内微裂纹的一个宏观测度。推导过程不涉及自由能的具体形式,主要结果包括损伤势函数及演化方程的解析表达式。在唯象的损伤力学模型里,损伤演化方程经常以唯象方程的形式出现。研究了唯象方程成立的条件及损伤特征张量的解析表达式。引入了广义裂隙张量及脆性指数的概念,并介绍了它们的作用和意义。  相似文献   

18.
This study introduced a novel Euler–Euler approach for modeling granular multiphase flow. The motion of particles with a large Stokes number was investigated assuming that granular material has unilateral compressibility. Solid pressure in the momentum equations for granular multiphase flow was determined so that the unilateral incompressibility condition was satisfied. Using the continuity condition of the granular phase, the equation was rewritten in the optimal form to calculate the solid pressure. A discrete formulation of smoothed particle hydrodynamics was applied for the convective terms so that the discrete matrix was positive semidefinite for the convergence and the discretization for an unstructured mesh was allowed. Frictional stress was then determined from solid pressure and, by using the solid pressure and frictional stress, momentum equations for the granular phase were solved. The method was incorporated into ANSYS FLUENT by a UDF (user defined function). Model validation was performed through a comparison with two previous results, and efficacy of the proposed model was confirmed.  相似文献   

19.
The equations which govern thin films of a Newtonian liquid confined between deformable solid surfaces are applied to the regions of near contact in a concentrated suspension of deformable particles.For the case of slightly deformable elastic particles, one obtains the socalled “elastohydrodynamic” equations of lubrication theory.The appropriate asymptotic solution of these equations yields estimates for the viscosity, of a form proposed earlier by Frankel and Acrivos [1] for rigid particles, as well as a relaxation time for a suspension of near spheres. The present method, which goes beyond the dissipation calculation of Frankel and Acrivos to a derivation of the full stress tensor, yields the same form of dependence of viscosity on particle concentration. However, there is an as yet unexplained difference between the methods in the value of a numerical coefficient determined by the assumed packing of the spheres.While further work is needed on the kinetic theory for fluid suspensions, the methods employed here for the derivation of the stress tensor should have direct utility for certain solid dispersions, where it is possible to specify a priori the particle-packing in the system.  相似文献   

20.
In this paper a generalized variational principle on the limit analysis dealing with the yield condition expressed by the sum of the homogeneous linear form of stress tensor and the homogeneous quadratic form of stress tensor is suggested.This variational principle can be applied to the limit analysis in rock mechanics and it takes the situation, in which the yield condition is expressed by the homogeneous linear form of stress tensor or the homogeneous quadratic form of stress tensor, as its special case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号