首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
含与不含晶界空穴的双晶体蠕变行为研究   总被引:1,自引:1,他引:0  
基于晶体滑移理论,建立了各向异性镍基合金双晶体的蠕变本构模型和蠕变寿命预测模型,通过MARC用户子程序CRPLAW将上述本构模型进行了有限元实现,并对双晶体蠕变行为进行了计算分析,考虑了:(1)晶体取向的影响;(2)垂直、倾斜和平行于外载方向的三种位向晶界情况;(3)晶界处引进空间空穴的影响。结果表明,双晶体上特别是微空穴和晶界附近区域的蠕变应力应变呈现不同的变化规律,对此晶粒晶体取向和晶界位向有较大的影响;微空穴的存在削弱了双晶体的承载能力,显著地影响了双晶体蠕变持久寿命;相同条件下,垂直晶界对双晶体模型的蠕变损伤影响最为强烈,倾斜晶界次之,平行晶界最小;微空穴的生长与晶界位向和晶体取向有强烈的依赖关系,其中垂直晶界更有利于晶体滑移和微空穴生长。  相似文献   

2.
为了探索岩石在周期性恒定拉伸、压缩荷载作用下的蠕变行为,结合杠杆原理,设计研制了一种岩石杠杆式拉伸、压缩蠕变试验仪。该仪器具有挂重质量小、可方便切换拉、压荷载等特点。首先,通过标定好的数显式拉压荷重传感器对该试验仪拉伸、压缩荷载进行了校正,得出试验仪压缩、拉伸荷载杠杆扩力比分别为81.29倍与59.46倍,挂重质量与施加在岩样荷载呈线性关系(压缩作用下线性关系相关系数R2=0.99975,拉伸作用下R2=0.9991),荷载施加稳定。最后,采用该试验仪对红砂岩进行了单轴恒定拉、压循环荷载下的蠕变试验,探讨了受荷岩样拉压蠕变规律。上述成果丰富了岩石蠕变测试与研究内容,有助于岩石力学试验测试的发展。  相似文献   

3.
In this work, the sliding contact of viscoelastic layers of finite thickness on rigid sinusoidal substrates is investigated within the framework of Green's functions approach. The periodic Green's functions are determined by means of a novel formalism, which can be applied, in general, to either 2D and 3D viscoelastic periodic contacts, regardless of the contact geometry and boundary conditions.Specifically, two different configurations are considered here: a free layer with a uniform pressure applied on the top, and a layer rigidly confined on the upper boundary. It is shown that the thickness affects the contact behavior differently, depending on the boundary conditions. In particular, the confined layer exhibits increasing contact stiffness when the thickness is reduced, leading to higher loads for complete contact to occur. The free layer, instead, becomes more and more compliant as thickness is reduced.We find that, in partial contact, the layer thickness and the boundary conditions significantly affect the frictional behavior. In fact, at low contact penetrations, the confined layer shows higher friction coefficients compared to the free layer case; whereas, the scenario is reversed at large contact penetrations. Furthermore, for confined layers, the sliding speed related to the friction coefficient peak is shifted as the contact penetration increases. However, once full contact is established, the friction coefficient shows a unique behavior regardless of the layer thickness and boundary conditions.  相似文献   

4.
Linear viscoelastic materials yield a creep function which only depends on time if creep experiments are performed under constant stress 0. In practice, this condition is very difficult to realize, and as a consequence, the experiments are performed under constant force. For small strains the difference between the conditions of constant stress and constant force is negligible. Otherwise, the decrease in cross-section has to be taken into account and leads to increasing stress in the course of time for creep experiments under constant load. The Boltzmann superposition principle is solved under the condition of constant load and for strains . The creep complicance C(t; 0) defined by the ratio becomes, in principle, dependent on the initial stress 0. As a consequence, a set of creep compliance curves cannot be approximated with a simple parameter fit. Already the application of the solution on the Burger model yields a creep compliance curve with all three creep ranges. Furthermore, the mathematical structure of the time creep compliance relation of the Burger model allows nonlinear viscoelastic extension via the introduction of the yield strength max and a nonlinearity parameter n l . The creep behavior of PBT and PC can be described in the range of long times up to initial stresses 0, being 75% for PBT and 60% for PC of the yield stress max with only two or one free fit parameter, respectively.  相似文献   

5.
6.
The round-off error introduces uncertainty in the numerical solution. A computational uncertainty principle is explained and validated by using chaotic systems, such as the climatic model, the Rossler and super chaos system. Maximally effective computation time (MECT) and optimal stepsize (OS) are discussed and obtained via an optimal searching method. Under OS in solving nonlinear ordinary differential equations, the self-memorization equations of chaotic systems are set up, thus a new approach to numerical weather forecast is described. The project supported by the National Natural Science Foundation of China (40275031 and 40231006), the National Key Program for Developing Basic Sciences (G1999043408) and the Key Innovation Project of Chinese Academy of Sciences (K2CX1-10-07)  相似文献   

7.
A non-perturbative approach to the time-averaging of nonlinear, autonomous ordinary differential equations is developed based on invariant manifold methodology. The method is implemented computationally and applied to model problems arising in the mechanics of solids.  相似文献   

8.
Tayebi  A.  Tadjine  M.  Rachid  A. 《Nonlinear dynamics》2001,24(2):167-181
In this paper it is shown that a class ofn-dimensional nonholonomic chained systems can bestabilized using the invariant manifold approach. First, we derive aninvariant manifold for this class of systems and we show that, once onit, all the closed-loop trajectories tend to the origin under a linearsmooth time-invariant state feedback. Thereafter, it is shown that thismanifold can be made attractive by means of a discontinuoustime-invariant state feedback. Finally, a mobile robot is taken as anexample demonstrating the effectiveness of our study.  相似文献   

9.
We have developed an accurate and highly efficient method for upscaling and simulation of immiscible displacements in three-dimensional (3D) heterogeneous reservoirs, which is an extension of the technique that we developed previously for 2D systems. The method utilizes wavelet transformations (WTs) to upscale the geological model of a reservoir, based on the spatial distribution of the single-phase permeabilities and the locations of the wells in the reservoir. It generates a non-uniform grid in which the resolved structure of the fine grid around the wells, as well as in the high-permeability sectors, are preserved, but the rest of the grid is upscaled. A robust uplayering procedure is used to reduce the number of the layers, and the WTs are used to upscale each layer areally. To demonstrate the method’s accuracy and efficiency, we have applied it to the geological model of a highly heterogeneous reservoir put forward in the tenth Society of Petroleum Engineers comparative solution project (the SPE-10 model), and carried out simulation of waterflooding in the upscaled model. Various upscaling scenarios were examined, and although some of them resulted in efficient simulations and accurate predictions, the results when non-uniform upscaling is used based on the WT technique are in excellent agreement with the solution of the same problem in the fine grid of the SPE-10 model. Most importantly, the speed-up factors that we obtain are several orders of magnitude. Hence, the method renders it unnecessary to use massively parallel computations for such problems.  相似文献   

10.
Existence and uniqueness results are established for weak formulations of initial-boundary value problems which model the dynamic behavior of an Euler-Bernoulli beam that may come into frictional contact with a stationary obstacle. The beam is assumed to be situated horizontally and may move both horizontally and vertically, as a result of applied loads. One end of the beam is clamped, while the other end is free. However, the horizontal motion of the free end is restricted by the presence of a stationary obstacle and when this end contacts the obstacle, the vertical motion of the end is assumed to be affected by friction. The contact and friction at this end is modelled in two different ways. The first involves the classic Signorini unilateral or nonpenetration conditions and Coulomb's law of dry friction; the second uses a normal compliance contact condition and a corresponding generalization of Coulomb's law. In both cases existence and uniqueness are established when the beam is subject to Kelvin-Voigt damping. In the absence of damping, existence of a solution is established for a problem in which the normal contact stress is regularized.The work of the last two authors was supported in part by Oakland University Research Fellowships.  相似文献   

11.
The results of a numerical simulation of the unsteady subsonic viscous gas flow around a two-dimensional profile oscillating with respect to the incidence angle are presented and the possibility of controlling the nonstationary aerodynamic characteristics is considered. The hysteresis phenomena typical of oscillatory profile motions are investigated, the dependence of the lift force and drag is found for various laws of periodic variation of the incidence angle with time, and the effect of the frequency and amplitude of the angular profile oscillations on the shape of the hysteresis curves is studied. The calculations were based on the numerical solution of the nonstationary Navier-Stokes equations averaged in the Reynolds sense (Reynolds equations) which were closed using the k-ω turbulence model with modeling of the laminar/turbulent transition.  相似文献   

12.
The present work tackles the modeling of multi-physics systems applying a topological approach while proceeding with a new methodology using a topological modification to the structure of systems. Then the comparison with the Magos' methodology is made. Their common ground is the use of connectivity within systems. The comparison and analysis of the different types of modeling show the importance of the topological methodology through the integration of the topological modification to the topological structure of a multi-physics system. In order to validate this methodology, the case of Pogo-stick is studied. The first step consists in generating a topological graph of the system. Then the connectivity step takes into account the contact with the ground. During the last step of this research; the MGS language (Modeling of General System) is used to model the system through equations. Finally, the results are compared to those obtained by MODELICA. Therefore, this proposed methodology may be generalized to model multi-physics systems that can be considered as a set of local elements.  相似文献   

13.
In the EasyDyn multibody open source project, computer algebra has been used from the beginning to generate the expressions of velocities and accelerations of the bodies, by symbolic differentiation of their position. Originally, the MuPAD computer algebra system had been retained because it was freely available for non commercial purposes and showed very good technical features. Unfortunately, MuPAD is nowadays only available through commercial channels and needs to be replaced to keep EasyDyn publicly available. This paper presents why Xcas/Giac is finally selected, among other long-term promising projects like Axiom, Maxima, Sage or Yacas. Among the choice criteria, the accessibility, the portability, the ease of use, the automatic export to C language, and the similarity with the MuPAD language are all considered. The performances of the MuPAD and Xcas/Giac implementations are also compared on some examples.  相似文献   

14.
We establish new properties of C 1(0, +∞)-solutions of systems of linear functional differential equations x′(t) = Ax(t) + Bx(qt) + Cx′(qt) in the neighborhood of the singular point t = 0.  相似文献   

15.
The nonlinear dynamics of ships and floating offshore platforms hasattracted much attention over the last several years. However the topicof multiple-degrees-of-freedom systems has almost been completely ignoredwith very few exceptions. This is probably due to the complexity ofanalyzing strongly nonlinear and coupled systems. It turns out thatcoupling may be particularly important for certain critical dynamicssuch as the dynamics of a floating offshore platform about its diagonalaxis. In a previous work, Kota et al. [1] applied the recently developed nonlinearnormal mode technique to analyze the coupled nonlinear dynamics of afloating offshore platform. Although this previous work was restrictedto unforced and undamped systems, in this work a comparison of the twoalternative nonlinear normal mode analysis techniques was completed.Considering the relative practical importance of damping versus externalforcing for this system, in the present work, we utilize just one of thetwo major techniques available [2] to analyze damped multiple-degrees-of-freedom nonlinear dynamics. Specifically, we investigate the effect ofnonlinearity, and non-proportionate damping. Our results show that thistechnique allows one to simply consider the effect of nonlinearity andgeneral damping on the resulting normal modes. This technique isparticularly powerful because it allows one to visualize the modes in ageometric fashion using the invariant manifold concept from dynamicalsystems.  相似文献   

16.
In this work, we extend the Particle Finite Element Method (PFEM) to multi‐fluid flow problems with the aim of exploiting the fact that Lagrangian methods are specially well suited for tracking interfaces. We develop a numerical scheme able to deal with large jumps in the physical properties, included surface tension, and able to accurately represent all types of discontinuities in the flow variables. The scheme is based on decoupling the velocity and pressure variables through a pressure segregation method that takes into account the interface conditions. The interface is defined to be aligned with the moving mesh, so that it remains sharp along time, and pressure degrees of freedom are duplicated at the interface nodes to represent the discontinuity of this variable due to surface tension and variable viscosity. Furthermore, the mesh is refined in the vicinity of the interface to improve the accuracy and the efficiency of the computations. We apply the resulting scheme to the benchmark problem of a two‐dimensional bubble rising in a liquid column presented in Hysing et al. (International Journal for Numerical Methods in Fluids 2009; 60 : 1259–1288), and propose two breakup and coalescence problems to assess the ability of a multi‐fluid code to model topology changes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is concerned with the modeling of randomness in multiscale analysis of heterogeneous materials. More specifically, a framework dedicated to the stochastic modeling of random properties is first introduced. A probabilistic model for matrix-valued second-order random fields with symmetry propertries, recently proposed in the literature, is further reviewed. Algorithms adapted to the Monte Carlo simulation of the proposed representation are also provided. The derivations and calibration procedure are finally exemplified through the modeling of the apparent properties associated with an elastic porous microstructure containing stochastic interphases.  相似文献   

18.
The fully dynamical motion of a phase boundary is considered for a specific class of elastic materials whose stress-strain relation in simple shear is nonmonotone. It is shown that a preexisting stationary phase boundary in a prestressed layer composed of such a material can be set in motion by a finite amplitude shear pulse. An infinity of solutions is possible according to the present theory, each of which is characterized by different reflected and transmitted waves at the phase boundary. A global analysis gives exact bounds on the size of the solution family for different shear pulse amplitudes. For certain ranges of shear pulse amplitudes a completely reflecting solution will exist, while for an in general different range of shear pulse amplitudes a completely transmitting solution will exist. The properties of these different solutions are examined. In particular, it is observed that the ringing of a shear pulse between the external boundaries and the internal phase boundary gives rise to periodic phase boundary motion for both the case of a completely reflecting phase boundary and a completely transmitting phase boundary.  相似文献   

19.
In Part I of this paper, we presented a general homogenization framework for determining the overall behavior, the evolution of the underlying microstructure, and the possible onset of macroscopic instabilities in fiber-reinforced elastomers subjected to finite deformations. In this work, we make use of this framework to generate specific results for general plane-strain loading of elastomers reinforced with aligned, cylindrical fibers. For the special case of rigid fibers and incompressible behavior for the matrix phase, closed-form, analytical results are obtained. The results suggest that the evolution of the microstructure has a dramatic effect on the effective response of the composite. Furthermore, in spite of the fact that both the matrix and the fibers are assumed to be strongly elliptic, the homogenized behavior is found to lose strong ellipticity at sufficiently large deformations, corresponding to the possible development of macroscopic instabilities [Geymonat, G., Müller, S., Triantafyllidis, N., 1993. Homogenization of nonlinearly elastic materials, macroscopic bifurcation and macroscopic loss of rank-one convexity. Arch. Rat. Mech. Anal. 122, 231-290]. The connection between the evolution of the microstructure and these macroscopic instabilities is put into evidence. In particular, when the reinforced elastomers are loaded in compression along the long, in-plane axis of the fibers, a certain type of “flopping” instability is detected, corresponding to the composite becoming infinitesimally soft to rotation of the fibers.  相似文献   

20.
SUPG methods were originally developed for the scalar advection-diffusion equation and the incompressible Navier-Stokes equations. In the last few years successful extensions have been made to symmetric advective-diffusive systems and, in particular, the compressible Euler and Navier-Stokes equations. New procedures have been introduced to improve resolution of discontinuities and thin layers. In this paper a brief overview is presented of recent progress in the development and understanding of SUPG methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号