首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enantiomers of the orthometalated dirhodium compound cis-Rh2(C6H4PPh2)2(OAc)2(HOAc)2 (R-1 and S-1) were prepared from carboxylate exchange reactions of the resolved diasteroisomers of cis-Rh2(C6H4PPh2)2(protos)2(H2O)2 (protos = N-4-methylphenylsulfonyl-l-proline anion) and acetic acid. These compounds react with excess Me3OBF4 in CH3CN, producing the enantiomers of [cis-Rh2(C6H4PPh2)2(CH3CN)6](BF4)2 (R-2 and S-2) which have six labile and replaceable CH3CN ligands in equatorial and axial positions. Reactions of R-2 and S-2 with tetraethylammonium salts of the linear dicarboxylic acids, terephthalic acid (HO2CC6H4CO2H), oxalic acid (HO2CCO2H), and 4,4'-diphenyl-dicarboxylic acid (HO2CC6H4C6H4CO2H) afford the enantiopure triangular supramolecules [cis-Rh2(C6H4PPh2)2(O2CC6H4CO2)(py)2]3, RRR-3 and SSS-3, Rh6(cis-C6H4PPh2)6(O2CCO2)3(py)5(CH2Cl2), RRR-4 and SSS-4, and Rh6(cis-C6H4PPh2)6(O2CC6H4C6H4CO2)3(py)4(CH2Cl2)2, RRR-5 and SSS-5, respectively. The absolute structures of each of the enantiomers of 1, 3, 4, and 5 were determined by X-ray diffraction analyses. The enantiomers of 3, 4, and 5 were found to be enantiomorphically isostructural, whereas R-1 and S-1 crystallized in different space groups. In 4 and 5, CH2Cl2 molecules coordinate to rhodium atoms in the axial positions. The 1H and 31P[1H] NMR spectra of all compounds are reported. The triangular compounds are redox-active, and their electrochemistry is also discussed. An assay of the catalytic activity/selectivity performance of the triangles for typical metal carbene transformation, using the model intermolecular cyclopropanation of styrene with ethyl diazoacetate in both homogeneous and heterogeneous phases, show that these chiral triangles are very active and have remarkable selectivity when compared with simple Rh2 paddle-wheel catalysts with chiral amidate ligands.  相似文献   

2.
Cotton FA  Murillo CA  Yu R 《Inorganic chemistry》2005,44(23):8211-8215
Two enantiopure molecular loops, RR-[cis-Rh2(C6H4PPh2)2(py)2O2C(CF2)(n)CO2]2 (1, n = 2 and 2, n = 3) have been made from the reaction in CH2Cl2 and CH3OH of the inherently chiral dirhodium compound, R-[cis-Rh2(C6H4PPh2)2(CH3CN)6](BF4)2, and HO2C(CF2)(n)CO2H in the presence of an excess of pyridine. Single-crystal structure analyses reveal that each of these compounds is composed of two R-cis-Rh2(C6H4PPh2)2(ax-py)2(2+) units, and two equatorial perfluorodicarboxylate linkers, which form a loop oligomer. The 1H, 19F, and 31P[1H] NMR spectra in CDCl3 and C5D5N indicate that only one type of highly symmetric species exists in each solution, which is consistent with the solid-state structures.  相似文献   

3.
The reaction of the in situ generated cyclooctene iridium(I) derivative trans-[IrCl(C8H14)(PiPr3)2] with benzene at 80 degrees C gave a mixture of the five-coordinate dihydrido and hydrido(phenyl) iridium(III) complexes [IrH2(Cl)(PiPr3)2] 2 and [IrH(C6H5)(Cl)(PiPr3)2] 3 in the ratio of about 1 : 2. The chloro- and fluoro-substituted arenes C6H5X (X = Cl, F), C6H4F2 and C6H4F(CH3) reacted also by C-H activation to afford the corresponding aryl(hydrido) iridium(III) derivatives [IrH(C6H4X)(Cl)(PiPr3)2] 7, 8, [IrH(C6H3F2)(Cl)(PiPr3)2] 9-11 and [IrH[C6H3F(CH3)](Cl)(PiPr3)2] 12, 13, respectively. The formation of isomeric mixtures had been detected by 1H, 13C, 19F and 31P NMR spectroscopy. Treatment of 3 and 7-13 with CO gave the octahedral carbonyl iridium(III) complexes [IrH(C6H3XX')(Cl)(CO)(PiPr3)2] 5, 14-20 without the elimination of the arene. The reactions of trans-[IrCl(C8H14)(PiPr3)2] with aryl ketones C6H5C(O)R (R = Me, Ph), aryl ketoximes C6H5C(NOH)R (R = Me, Ph) and benzaloxime C6H5C(NOH)H resulted in the formation of six-coordinate aryl(hydrido) iridium(III) compounds 21-25 with the aryl ligand coordinated in a bidentate kappa2-C,O or kappa2-C,N fashion. With C6H5C(O)NH2 as the substrate, the two isomers [IrH[kappa2-N,O-NHC(O)C6H5](Cl)(PiPr3)2] 26 and [IrH[kappa2-C,O-C6H4C(O)NH2](Cl)(PiPr3)2] 27 were prepared stepwise. Treatment of trans-[IrCl(C8H14)(PiPr3)2] with benzoic acid gave the benzoato(hydrido) complex [IrH[kappa2-O,O-O2CC6H5](Cl)(PiPr3)2] 29 which did not rearrange to the kappa2-C,O isomer.  相似文献   

4.
Huang JS  Yu GA  Xie J  Wong KM  Zhu N  Che CM 《Inorganic chemistry》2008,47(20):9166-9181
Reduction of [Fe(III)(Por)Cl] (Por = porphyrinato dianion) with Na2S2O4 followed by reaction with excess PH2Ph, PH2Ad, or PHPh2 afforded [Fe(II)(F20-TPP)(PH2Ph)2] (1a), [Fe(II)(F20-TPP)(PH2Ad)2] (1b), [Fe(II)(F20-TPP)(PHPh2)2] (2a), and [Fe(II)(2,6-Cl2TPP)(PHPh2)2] (2b). Reaction of [Ru(II)(Pc)(DMSO)2] (Pc = phthalocyaninato dianion) with PH2Ph or PHPh2 gave [Ru(II)(Pc)(PH2Ph)2] (3a) and [Ru(II)(Pc)(PHPh2)2] (4). [Ru(II)(Pc)(PH2Ad)2] (3b) and [Ru(II)(Pc)(PH2Bu(t))2] (3c) were isolated by treating a mixture of [Ru(II)(Pc)(DMSO)2] and O=PCl2Ad or PCl2Bu(t) with LiAlH4. Hydrophosphination of CH2=CHR (R = CO2Et, CN) with [Ru(II)(F20-TPP)(PH2Ph)2] or [Ru(II)(F20-TPP)(PHPh2)2] in the presence of (t)BuOK led to the isolation of [Ru(II)(F20-TPP)(P(CH2CH2R)2Ph)2] (R = CO2Et, 5a; CN, 5b) and [Ru(II)(F20-TPP)(P(CH2CH2R)Ph2)2] (R = CO2Et, 6a; CN, 6b). Similar reaction of 3a with CH2=CHCN or MeI gave [Ru(II)(Pc)(P(CH2CH2CN)2Ph)2] (7) or [Ru(II)(Pc)(PMe2Ph)2] (8). The reactions of 4 with CH2=CHR (R = CO2Et, CN, C(O)Me, P(O)(OEt)2, S(O)2Ph), CH2=C(Me)CO2Me, CH(CO2Me)=CHCO2Me, MeI, BnCl, and RBr (R = (n)Bu, CH2=CHCH2, MeC[triple bond]CCH2, HC[triple bond]CCH2) in the presence of (t)BuOK afforded [Ru(II)(Pc)(P(CH2CH2R)Ph2)2] (R = CO2Et, 9a; CN, 9b; C(O)Me, 9c; P(O)(OEt)2, 9d; S(O)2Ph, 9e), [Ru(II)(Pc)(P(CH2CH(Me)CO2Me)Ph2)2] (9f), [Ru(II)(Pc)(P(CH(CO2Me)CH2CO2Me)Ph2)2] (9g), and [Ru(II)(Pc)(PRPh2)2] (R = Me, 10a; Bu(n), 10b; Bn, 10c; CH2CH=CH2, 10d; CH2C[triple bond]CMe, 10e; CH=C=CH2, 10f). X-ray crystal structure determinations revealed Fe-P distances of 2.2597(9) (1a) and 2.309(2) A (2bx 2 CH2Cl2) and Ru-P distances of 2.3707(13) (3b), 2.373(2) (3c), 2.3478(11) (4), and 2.3754(10) A (5b x 2 CH2Cl2). Both the crystal structures of 3b and 4 feature intermolecular C-H...pi interactions, which link the molecules into 3D and 2D networks, respectively.  相似文献   

5.
A chiral supramolecular compound (H3O){[cis-Rh2((C6H5)2P(C6H4))2(SO4)- (DMF)]2(μ- OC2H5)}·6C2H5OH (1) has been synthesized and characterized by X-ray single-crystal analysis. Compound 1 crystallizes in monoclinic, space group C2/c with a = 26.752(3), b = 13.5868(16), c = 26.611(3) , β = 103.891(2)°, V = 9389.5(19) 3, Z = 4, C92H114N2O18P4Rh4, Mr = 2135.49, Dc = 1.511 g/cm3, F(000) = 4384 and μ(MoKα) = 0.870 mm-1. The final R = 0.0441 and wR = 0.1186 for 8283 observed reflections with I > 2σ(I) and R = 0.0567 and wR = 0.1290 for all data. The structure of the compound is unique. It contains two inherent chiral {cis-Rh2[(C6H5)2P(C6H4)]2}2+ units which are connected not only in the equatorial positions by two sulfato ligands, but also in two of their axial positions by a μ2 ethoxide anion. The remaining axial positions of Rh24+ units in 1 are occupied by the DMF molecules. The sulfato ligands act as μ4 tridentate bridges to connect the Rh24+ units. The Rh-Rh metal-metal bond distances are comparable to those in analogous dirhodium compounds.  相似文献   

6.
Reaction of bis(2-aminoethyl)(3-aminopropyl)amine with C(6)F(6) and K(2)CO(3) in DMSO yields unsymmetrical [(C(6)F(5))HNCH(2)CH(2)](2)NCH(2)CH(2)CH(2)NH(C(6)F(5)) ([N(3)N]H(3)). The tetraamine acts as a tridentate ligand in complexes of the type H[N(3)N]Re(O)X (X = Cl 1, Br 2) prepared by reacting Re(O)X(3)(PPh(3))(2) with [N(3)N]H(3) and an excess of NEt(3) in THF. Addition of 1 equiv of TaCH(CMe(2)Ph)Br(3)(THF)(2) to 1 gives the dimeric compound H[N(3)N]ClReOReBrCl[N(3)N]H (3) in quantitative yield that contains a Re(V)[double bond]O[bond]Re(IV) core with uncoordinated aminopropyl groups in each ligand. Addition of 2 equiv of TaCH(CMe(2)Ph)Cl(3)(THF)(2) to 1 leads to the chloro complex [N(3)N]ReCl (4) with all three amido groups coordinated to the metal, whereas by addition of 2 equiv of TaCH(CMe(2)Ph)Br(3)(THF)(2) to 2 the dibromo species H[N(3)N]ReBr(2) (5) with one uncoordinated amino group is isolated. Reduction of 4 under an atmosphere of dinitrogen with sodium amalgam gives the dinitrogen complex [N(3)N]Re(N(2)) (6). Single-crystal X-ray structure determinations have been carried out on complexes 1, 3, 5, and 6.  相似文献   

7.
Reactions of trans-(C6F5)(Ph2P(CH2)m'CH=CH2)2PtCl (1; m' = a, 6; b, 7; c, 8; d, 9; e, 10) and H(CC)2H (HNEt2, cat. CuI) give trans-(C6F5)(Ph2P(CH2)m'CH=CH2)2Pt(CC)2H (3a-e, 80-95%). Oxidative homocouplings of 3a-d under Hay conditions (O2, cat. CuCl/TMEDA, acetone) yield trans,trans-(C6F5)(Ph2P(CH2)m'CH=CH2)2Pt(CC)4Pt(Ph2P(CH2)m'CH=CH2)2(C6F5) (4a-d, 64-84%). Treatment of 3c-e with excess HCCSiEt3 under Hay conditions gives trans-(C6F5)(Ph2P(CH2)m'CH=CH2)2Pt(CC)3SiEt3 (56-73%). Homocouplings (n-Bu4N+ F-, Me3SiCl, Hay conditions) afford trans,trans-(C6F5)(Ph2P(CH2)m'CH=CH2)2Pt(CC)6Pt(Ph2P(CH2)m'CH=CH2)2(C6F5) (13c-e, 59-64%). Reactions of 4a-d and 13c-e with Grubbs' catalyst, followed by hydrogenation, give mixtures of trans,trans-(C6F5)(Ph2P(CH2)mPPh2)Pt(CC)nPt(Ph2P(CH2)mPPh2)(C6F5) with termini-spanning diphosphines and trans,trans-(C6F5)(Ph2P(CH2)mPPh2)Pt(CC)nPt(Ph2P(CH2)mPPh2)(C6F5) with trans-spanning diphosphines (m = 2m' + 2; n = 4, 6). The latter (n = 4) are independently synthesized by similar metatheses/hydrogenations of 1a-d to give trans-(C6F5)(Ph2P(CH2)mPPh2)PtCl (49-59%), followed by analogous introductions of (CC)4 chains (66-77%). Crystal structures of complexes with termini-spanning diphosphines show sp3 chains with both double-helical (m/n = 20/4) and nonhelical (m/n = 20/6) conformations, and highly shielded sp chains. The sp3 chains of complexes with trans-spanning diphosphines exhibit double half-clamshell conformations. The dynamic properties of both classes of molecules are analyzed in detail.  相似文献   

8.
Cotton FA  Murillo CA  Wang X  Yu R 《Inorganic chemistry》2004,43(26):8394-8403
Reaction of racemic cis-Rh(2)(C(6)H(4)PPh(2))(2)(OAc)(2)(HOAc)(2) with excess Me(3)OBF(4) in CH(3)CN results in the formation of racemic cis-[Rh(2)(C(6)H(4)PPh(2))(2)(CH(3)CN)(6)](BF(4))(2).0.5H(2)O (1.0.5H(2)O), an ionic dirhodium complex which has two cisoid nonlabile orthometalated phosphine bridging anions and six labile CH(3)CN ligands in equatorial and axial positions. Reactions of 1 with tetraethylammonium salts of the linear dicarboxylates, oxalate, terephthalate, and 4,4'-biphenyl-dicarboxylate, in organic solvents, produced racemic crystals of the triangular compounds [Rh(2)(C(6)H(4)PPh(2))(2)](3)(C(2)O(4))(3)(py)(6).6MeOH.H(2)O (2.6MeOH.H(2)O), [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)CO(2))(3)(DMF)(6).6.5DMF.0.5H(2)O (3.6.5DMF.0.5H(2)O), and [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)C(6)H(4)CO(2))(3)(py)(6).4.5CH(3)OH.0.75H(2)O (4.4.5CH(3)OH.0.75H(2)O), respectively. All compounds are electrochemically active. The relative chiralities of the dirhodium units in each triangle have been established using a combination of data from X-ray crystallography and (31)P NMR spectroscopy.  相似文献   

9.
The reaction of CpMo(CO)(dppe)Cl (dppe = Ph2PCH2CH2PPh2) with Na+[AlH2(OCH2CH2OCH3)2]- gives the molybdenum hydride complex CpMo(CO)(dppe)H, the structure of which was determined by X-ray crystallography. Electrochemical oxidation of CpMo(CO)(dppe)H in CH3CN is quasi-reversible, with the peak potential at -0.15 V (vs Fc/Fc+). The reaction of CpMo(CO)(dppe)H with 1 equiv of Ph3C+BF4- in CD3CN gives [CpMo(CO)(dppe)(NCCD3)]+ as the organometallic product, along with dihydrogen and Gomberg's dimer (which is formed by dimerization of Ph3C.). The proposed mechanism involves one-electron oxidation of CpMo(CO)(dppe)H by Ph3C+ to give the radical-cation complex [CpMo(CO)(dppe)H].+. Proton transfer from [CpMo(CO)(dppe)H].+ to CpMo(CO)(dppe)H, loss of dihydrogen from [CpMo(CO)(dppe)(H)2]+, and oxidation of Cp(CO)(dppe)Mo. by Ph3C+ lead to the observed products. In the presence of an amine base, the stoichiometry changes, with 2 equiv of Ph3C+ being required for each 1 equiv of CpMo(CO)(dppe)H because of deprotonation of [CpMo(CO)(dppe)H].+ by the amine. Protonation of CpMo(CO)(dppe)H by HOTf provides the dihydride complex [CpMo(CO)(dppe)(H)2]+OTf-, which loses dihydrogen to generate CpMo(CO)(dppe)(OTf).  相似文献   

10.
1 INTRODUCTION Recently coinage metal complexes of poly- dentate phosphines are of great interest owing to the applications in diverse areas such as supramolecular design, photophysics and catalysis[1~4]. It is well- known that the binuclear coinage metal complexes of diphosphine [M2(diphosphine)2(MeCN)2]2+ (M = Cu, Ag, Au)[5~16] are excellent precursors for the design of polynuclear or polymeric materials with desired properties due to the easy substitution of weakly coordinated ac…  相似文献   

11.
The reaction of [NBu(4)](2)[Ni(C(6)F(5))(4)] (1) with solutions of dry HCl(g) in Et(2)O results in the protonolysis of two Nibond;C(6)F(5) bonds giving [NBu(4)](2)[[Ni(C(6)F(5))(2)](2)(mu-Cl)(2)] (2 a) together with the stoichiometrically required amount of C(6)F(5)H. Compound 2 a reacts with AgClO(4) in THF to give cis-[Ni(C(6)F(5))(2)(thf)(2)] (3). Reacting 3 with phosphonium halides, [PPh(3)Me]X, gives dinuclear compounds [PPh(3)Me](2)[[Ni(C(6)F(5))(2)](2)(mu-X)(2)] (X=Br (2 b) or I (2 c)). Solutions of compounds 2 in CH(2)Cl(2) at 0 degrees C do not react with excess CNtBu, but do react with CO (1 atm) to split the bridges and form a series of terminal Ni(II) carbonyl derivatives with general formula Qcis-[Ni(C(6)F(5))(2)X(CO)] (4). The nu(CO) stretching frequencies of 4 in CH(2)Cl(2) solution decrease in the order Cl (2090 cm(-1))>Br (2084 cm(-1))>I (2073 cm(-1)). Compounds 4 revert to the parent dinuclear species 2 on increasing the temperature or under reduced CO pressure. [NBu(4)]cis-[Ni(C(6)F(5))(2)Cl(CO)] (4 a) reacts with AgC(6)F(5) to give [NBu(4)][Ni(C(6)F(5))(3)(CO)] (5, nu(CO)(CH(2)Cl(2))=2070 cm(-1)). Compound 5 is also quantitatively formed ((19)F NMR spectroscopy) by 1:1 reaction of 1 with HCl(Et(2)O) in CO atmosphere. Complex 3 reacts with CO at -78 degrees C to give cis-[Ni(C(6)F(5))(2)(CO)(2)] (6, nu(CO)(CH(2)Cl(2))=2156, 2130 cm(-1)), which easily decomposes by reductive elimination of C(6)F(5)bond;C(6)F(5). Compounds 3 and 6 both react with CNtBu to give trans-[Ni(C(6)F(5))(2)(CNtBu)(2)] (7). The solid-state structures of compounds 3, 4 b, 6, and 7 have been established by X-ray diffraction methods. Complexes 4-6 are rare examples of square-planar Ni(II) carbonyl derivatives.  相似文献   

12.
The diastereoselective addition of Ph(2)PH to the chiral ortho-substituted eta(6)-benzaldimine complexes (eta(6)-o-X-C(6)H(4)CH=NAr)Cr(CO)(3) (1, X = MeO, Ar = p-C(6)H(4)OMe; 2, X = Cl, Ar = Ph) leads to the formation of the corresponding chiral aminophosphines (alpha-P,N) Ph(2)P-CH(Ar(1))-NHAr(2) (3, Ar(1) = o-C(6)H(4)(OCH(3))[Cr(CO)(3)], Ar(2) = p-C(6)H(4)OCH(3); 4, Ar(1) = o-C(6)H(4)Cl[Cr(CO)(3)], Ar(2) = Ph) in equilibrium with the starting materials. The uncomplexed benzaldimine (o-ClC(6)H(4)CH=NPh), 2', analogously produces an equilibrium amount of the corresponding aminophosphine Ph(2)P-CH(Ar(1))-NHAr(2) (4', Ar(1) = o-C(6)H(4)Cl, Ar(2) = Ph). Depending on the equilibrium constant, the subsequent addition of (1)/(2) equiv of [RhCl(COD)](2) (COD = 1,5-cyclooctadiene) leads to either Ph(2)PH oxidative addition in the case of 3 or to the corresponding [RhCl(COD)(alpha-P,N)] complexes [RhCl(COD)(Ph(2)P-CH[o-C(6)H(4)Cl[Cr(CO)(3)]]-NHPh)] (5) and [RhCl(COD)(Ph(2)P-CH(o-C(6)H(4)Cl)-NHPh)] (5') in the cases of the aminophosphines 4 and 4'. The addition of the latter ligands, as racemic mixtures, to (1)/(4) equiv of [Rh(CO)(2)Cl](2) leads to the [RhCl(CO)(alpha-P,N)(2)] complexes [RhCO(Ph(2)P-CH[o-C(6)H(4)Cl[Cr(CO)(3)]]-NHPh)(2)Cl] (7) or [RhCO(Ph(2)P-CH(o-C(6)H(4)Cl)-NHPh)(2)Cl] (7') as mixtures of (R(C),S(C))/(S(C),R(C)) and (R(C),R(C))/(S(C),S(C)) diastereomers. The rhodium complexes 5 and 7' have been fully characterized by IR and (31)P NMR spectroscopies and X-ray crystallography. These compounds exhibit intramolecular Rh-Cl.H-N interactions in the solid state and in solution. The stability of the new rhodium complexes has been studied under different CO pressures. Under 1 atm of CO, 5 is converted to an unstable complex [RhCl(CO)(2)(alpha-P,N)], 6, which undergoes ligand redistribution leading to 7 plus an unidentified complex. This reaction is inhibited under higher CO or syngas pressure, as confirmed by the observation of the same catalytic activity in hydroformylation when styrene was added to a catalytic mixture that was either freshly prepared or left standing for 20 h under high CO pressure.  相似文献   

13.
The metal halides of Group 5 MX(5) (M = Nb, Ta; X = F, Cl, Br) react with ketones and acetylacetones affording the octahedral complexes [MX(5)(ketone)] () and [TaX(4){kappa(2)(O)-OC(Me)C(R)C(Me)O}] (R = H, Me, ), respectively. The adducts [MX(5)(acetone)] are still reactive towards acetone, acetophenone or benzophenone, giving the aldolate species [MX(4){kappa(2)(O)-OC(Me)CH(2)C(R)(R')O}] (). The syntheses of (M = Ta, X = F, R = R' = Ph) and (M = Ta, X = Cl, R = Me, R' = Ph) take place with concomitant formation of [(Ph(2)CO)(2)-H][TaF(6)], and [(MePhCO)(2)-H][TaCl(6)], respectively. The compounds [acacH(2)][TaF(6)], and [TaF{OC(Me)C(Me)C(Me)O}(3)][TaF(6)], have been isolated as by-products in the reactions of TaF(5) with acacH and 3-methyl-2,4-pentanedione, respectively. The molecular structures of, and have been ascertained by single crystal X-ray diffraction studies.  相似文献   

14.
1 INTRODUCTION Widespread interest of metal-organic coordination compounds has been stirred by their intriguing struc- tural topologies and promising properties[1]. Al- though structural motifs of coordination compounds are mainly defined by metal ions’ coordination pre- ferences and chemical structures of organic ligands including the molecular angle, length and relative orientation of the donor groups[2], numerous other factors such as solvent systems, concentration, coun- terions and e…  相似文献   

15.
The elongated dihydrogen complex [Os{C6H4C(O) CH3}(eta2-H2)(H2O)(PiPr3)2]BF4 reacts with phenylacetylene and HBF4.OEt2 to give the unsaturated compound [Os{(E)-CH=CHPh}(CCPh)(CCH2Ph)(PiPr3)2]BF4 containing alkenyl, alkynyl, and carbyne ligands. The addition of sodium chloride to this compound leads to the cyclic allene Os{=C=C(Ph)CH(Ph)CH=C(CH2Ph)}Cl(PiPr3)2, which is the first isometallabenzene with the structure of a 1,2,4-cyclohexatriene.  相似文献   

16.
A series of tin(II) amido complexes possessing m-terphenyl carboxylate ligands have been prepared. These complexes, namely [(Me(3)Si)(2)NSn(mu-O(2)CC(6)H(2)Ph(3))](2), [(Me(3)Si)(2)NSn(mu-O(2)CC(6)H(3)Mes(2))](2), and [(Me(3)Si)(2)NSn(mu-O(2)CC(6)H(2)Mes(2)Me)](2) [Mes = 2,4,6-trimethylphenyl], are the first structurally characterized examples of tin(II) carboxylate complexes exhibiting discrete Sn(2)O(4)C(2) heterocyclic cores. Initial reactivity studies led to the isolation of a 1,3-diaza-2,4-distannacyclobutanediyl, [(Mes(2)C(6)H(3)CO(2))Sn(mu-NSiMe(3))](2). This molecule possesses a Sn(2)N(2) heterocyclic core and it was crystallised as both the CH(2)Cl(2) and Et(2)O solvates. Although the tin atoms in this molecule have a formal oxidation state of 3+, preliminary computational studies on this molecule suggest that it is best described as a ground state singlet. Finally, the X-ray crystal structure of (CH(2)Cl)(Cl)Sn[N(SiMe(3))(2)](2), the product of oxidative addition of CH(2)Cl(2) to Sn[N(SiMe(3))(2)](2), is also presented herein.  相似文献   

17.
Facile substitution reactions of the two water ligands in the hydrophilic tetradentate phosphine complex cis-[Fe{(HOCH2)P{CH2N(CH2P(CH2OH)2)CH2}2P(CH2OH)}(H2O)2](SO4) (abbreviated to [Fe(L1)(H2O)2](SO4), 1) take place upon addition of Cl-, NCS-, N3(-), CO3(2-) and CO to give [Fe(L1)X2] (2, X = Cl; 4, X = NCS; 5, X=N3), [Fe(L1)(kappa2-O(2)CO)], 6 and [Fe(L1)(CO)2](SO4), 7. The unsymmetrical mono-substituted intermediates [Fe(L1)(H2O)(CO)](SO(4)) and [Fe(L(1))(CO)(kappa(1)-OSO(3))] (8/9) have been identified spectroscopically en-route to 7. Treatment of 1 with acetic anhydride affords the acylated derivative [Fe{(AcOCH2)P{CH2N(CH2P(CH2OAc)2)CH2}2P(CH2OAc)}(kappa2-O(2)SO2)] (abbreviated to [Fe(L2)(kappa2-O(2)SO2)], 10), which has increased solubility over 1 in both organic solvents and water. Treatment of 1 with glycine does not lead to functionalisation of L1, but substitution of the aqua ligands occurs to form [Fe(L(1))(NH(2)CH(2)CO(2)-kappa(2)N,O)](HSO(4)), 11. Compound 10 reacts with chloride to form [Fe(L(2))Cl(2)] 12, and 12 reacts with CO in the presence of NaBPh4 to form [Fe(L2)Cl(CO)](BPh4) 13b. Both of the chlorides in 12 are substituted on reaction with NCS- and N3(-) to form [Fe(L2)(NCS)2] 14 and [Fe(L2)(N3)2] 15, respectively. Complexes 2.H2O, 4.2H2O, 5.0.812H2O, 6.1.7H2O, 7.H2O, 10.1.3CH3C(O)CH3, 12 and 15.0.5H2O have all been crystallographically characterised.  相似文献   

18.
Treatment of [Fe2(mu-pdt)(CO)6] [pdt=S(CH2)3S] with dppe (Ph2PCH2CH2PPh2) in refluxing toluene affords the asymmetric complex [Fe2(mu-pdt)(CO)4(dppe)] (1). Protonation of 1 with HBF4-Et2O in CH2Cl2 gives at room temperature the mu-hydrido derivative [Fe2(mu-pdt)(CO)4(dppe)(mu-H)](BF4) (2). Monitoring the reaction by 1H, 31P, and 13C NMR at low temperature reveals unambiguously that the process of the protonation of 1 implies terminal hydride intermediates.  相似文献   

19.
Treatment of 0.5 equiv of [Cp*IrCl(2)](2) with 1/3-P(i)Pr(2)-2-S(t)Bu-indene afforded Cp*Ir(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (1) in 95% yield (Cp* = eta(5)-C(5)Me(5)). Addition of AgOTf or LiB(C(6)F(5))(4) x 2.5 OEt(2) to 1 gave [Cp*Ir(kappa(2)-3-P(i)Pr(2)-2-S-indene)](+)X(-) ([2](+)X(-); X = OTf, 78%; X = B(C(6)F(5))(4), 82%), which represent the first examples of isolable coordinatively unsaturated [Cp'Ir(kappa(2)-P,S)](+)X(-) complexes. Exposure of [2](+)OTf(-) to CO afforded [2 x CO](+)OTf(-) in 91% yield, while treatment of [2](+)B(C(6)F(5))(4)(-) with PMe(3) generated [2 x PMe(3)](+)B(C(6)F(5))(4)(-) in 94% yield. Treatment of 1 with K(2)CO(3) in CH(3)CN allowed for the isolation of the unusual adduct 3 x CH(3)CN (41% isolated yield), in which the CH(3)CN bridges the Lewis acidic Cp*Ir and Lewis basic indenide fragments of the targeted coordinatively unsaturated zwitterion Cp*Ir(kappa(2)-3-P(i)Pr(2)-2-S-indenide) (3). In contrast to the formation of [2 x CO](+)OTf(-), exposure of 3 x CH(3)CN to CO did not afford 3 x CO; instead, a clean 1:1 mixture of (kappa(2)-3-P(i)Pr(2)-2-S-indene)Ir(CO)(2) (4) and 1,2,3,4-tetramethylfulvene was generated. Treatment of [2](+)OTf(-) with Ph(2)SiH(2) resulted in the net loss of Ph(2)Si(OTf)H to give Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (5) in 44% yield. In contrast, treatment of [2](+)B(C(6)F(5))(4)(-) with Ph(2)SiH(2) or PhSiH(3) proceeded via H-Si addition across Ir-S to give the corresponding [Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPhX)-indene)](+)B(C(6)F(5))(4)(-) complexes 6a (X = Ph, 68%) or 6b (X = H, 77%), which feature a newly established S-Si linkage. Compound 6a was observed to effect net C-O bond cleavage in diethyl ether with net loss of Ph(2)Si(OEt)H, affording [Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-SEt-indene)](+)B(C(6)F(5))(4)(-) (7) in 77% yield. Furthermore, 6a proved capable of transferring Ph(2)SiH(2) to acetophenone, with concomitant regeneration of [2](+)B(C(6)F(5))(4)(-); however, [2](+)X(-) did not prove to be effective ketone hydrosilylation catalysts. Treatment of 1/3-P(i)Pr(2)-2-S(t)Bu-indene with 0.5 equiv of [Cp*RhCl(2)](2) gave Cp*Rh(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (8) in 94% yield. Combination of 8 and LiB(C(6)F(5))(4) x 2.5 Et(2)O produced the coordinatively unsaturated cation [Cp*Rh(kappa(2)-3-P(i)Pr(2)-2-S-indene)](+)B(C(6)F(5))(4)(-) ([9](+)B(C(6)F(5))(4)(-)), which was transformed into [Cp*Rh(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPh(2))-indene)](+)B(C(6)F(5))(4)(-) (10) via net H-Si addition of Ph(2)SiH(2) to Rh-S. Unlike [2](+)X(-), complex [9](+)B(C(6)F(5))(4)(-) was shown to be an effective catalyst for ketone hydrosilylation. Treatment of 3 x CH(3)CN with Ph(2)SiH(2) resulted in the loss of CH(3)CN, along with the formation of Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S-(1-diphenylsilylindene)) (11) (64% isolated yield) as a mixture of diastereomers. The formation of 11 corresponds to heterolytic H-Si bond activation, involving net addition of H(-) and Ph(2)HSi(+) fragments to Ir and indenide in the unobserved zwitterion 3. Crystallographic data are provided for 1, [2 x CO](+)OTf(-), 3 x CH(3)CN, 7, and 11. Collectively, these results demonstrate the versatility of donor-functionalized indene ancillary ligands in allowing for the selection of divergent metal-ligand cooperativity pathways (simply by ancillary ligand deprotonation) in the activation of small molecule substrates.  相似文献   

20.
A series of vinyl, aryl, acetylide and silyl complexes [Ru(R)(kappa2-MI)(CO)(PPh3)2] (R = CH=CH2, CH=CHPh, CH=CHC6H4CH3-4, CH=CH(t)Bu, CH=2OH, C(C triple bond CPh)=CHPh, C6H5, C triple bond CPh, SiMe2OEt; MI = 1-methylimidazole-2-thiolate) were prepared from either [Ru(R)Cl(CO)(PPh3)2] or [Ru(R)Cl(CO)(BTD)(PPh3)2](BTD = 2,1,3-benzothiadiazole) by reaction with the nitrogen-sulfur mixed-donor ligand, 1-methyl-2-mercaptoimidazole (HMI), in the presence of base. In the same manner, [Os(CH=CHPh)(kappa2-MI)(CO)(PPh3)2] was prepared from [Os(CH=CHPh)(CO)Cl(BTD)(PPh3)2]. The in situ hydroruthenation of 1-ethynylcyclohexan-1-ol by [RuH(CO)Cl(BTD)(PPh3)2] and subsequent addition of the HMI ligand and excess sodium methoxide yielded the dehydrated 1,3-dienyl complex [Ru(CH=CHC6H9)(kappa2-MI)(CO)(PPh3)2]. Dehydration of the complex [Ru(CH=CHCPh2OH)(kappa2-MI)(CO)(PPh3)2] with HBF4 yielded the vinyl carbene [Ru(=CHCH=CPh2)(kappa2-MI)(CO)(PPh3)2]BF4. The hydride complexes [MH(kappa2-MI)(CO)(PPh3)2](M = Ru, Os) were obtained from the reaction of HMI and KOH with [RuHCl(CO)(PPh3)3] and [OsHCl(CO)(BTD)(PPh3)2], respectively. Reaction of [Ru(CH=CHC6H4CH3-4)(kappa2-MI)(CO)(PPh3)2] with excess HC triple bond CPh leads to isolation of the acetylide complex [Ru(C triple bond CPh)(kappa2-MI)(CO)(PPh3)2], which is also accessible by direct reaction of [Ru(C triple bond CPh)Cl(CO)(BTD)(PPh3)2] with 1-methyl-2-mercaptoimidazole and NaOMe. The thiocarbonyl complex [Ru(CPh = CHPh)Cl(CS)(PPh3)2] reacted with HMI and NaOMe without migration to yield [Ru(CPh= CHPh)(kappa2-MI)(CS)(PPh3)2], while treatment of [Ru(CH=CHPh)Cl(CO)2(PPh3)2] with HMI yielded the monodentate acyl product [Ru{eta(1)-C(=O)CH=CHPh}(kappa2-MI)(CO)(PPh3)2]. The single-crystal X-ray structures of five complexes bearing vinyl, aryl, acetylide and dienyl functionality are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号