首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
Reaction of [Pd(dppe)Cl2/Br2] with AgOTf in a dichloromethane medium followed by ligand addition led to [Pd(dppe)(OSO2CF3)2] and then [Pd(dppe)(RaaiR)](OSO2CF3)2 [RaaiR′ = p-R-C6H4-N=N-C3H2-NN-1-R′, (1–3), abbreviated as a N,N′-chelator, where N(imidazole) and N(azo) are represented by N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion, dppe = 1,2-bis-(diphenylphosphinoethane)]. 31P “1H” NMR confirmed that due to the two phosphorus atom interaction in the azoimine symmetrical environment one sharp peak was formed. The 1H NMR spectral measurements suggest that azo-imine link with lot of phenyl protons in the aromatic region. 13C (1H) NMR spectrum, 1H, 1H COSY and 1H, 13C HMQC spectrum assign the solution structure and stereo-retentive conformation in each complex.  相似文献   

2.
Various preparative routes for the synthesis of (CH3)3SiP(CF3)2 are discussed. The most favourable method, reaction of (CH3)3MPH2 with HE(CF3)2, provides a good yield of (CH3)3ME(CF3)2 compounds (M = Si, Ge, Sn; E = P, As). The reaction rate is dependent on M (Si < Ge <Sn) und E (P < As). The stability and reactivity of the (CH3)3ME(CF3)2 compounds are discussed. The new compounds were characterized by NMR and IR spectra and by cleavage reactions of the M-E bond. 1H, 19F NMR and IR spectral data are reported.  相似文献   

3.
《Polyhedron》1988,7(6):449-462
The complexes [ML*(NO)Cl(OR)] {L* = HB(3,5-Me2C3HN2)3; M= Mo, R = CH2CH2X, X = Cl, OMe or OEt; (CH2)nOH, n = 2, 5, 6; M = W, R = CH2CH2X, X = Cl, OMe or OEt; (CH2)nOH, n = 2–6; CH2(CF2)3CH2OH; CHMeCH2CMe2OH} and [ML*(NO)(OR)2] {M = Mo, R = CH2CH2X, X = Cl, OMe or OEt; (CH2)nOH, n = 2–6; M = W,R = CH2CH2X, X= Cl, OMe or OEt; (CH2)nOH, n = 2,4–6; CH2(CF2)3CH2OH} have been prepared from [ML*(NO)Cl2] and the appropriate alcohol in the presence of NEt3 or NaCO3, and have been characterized by IR, 1H NMR and mass spectroscopy.  相似文献   

4.
Reaction of cyanamide (NCNH2) with trans-[M(N2)2(dppe)2] (M = Mo or W, dppe = PH2PCH2CH2PPh2) leads to the formation of the bis(cyanoimido) complexes trans-[M(NCN)2(dppe)2]. The crystal structure of trans-[Mo(NCN)2(dppe)2] has been determined by an X-ray diffraction study.  相似文献   

5.
Abstract

The new complexes [CpRu(PPh3)2(RSSR)PF6 R=CH3, iso-Pr, CH2C6H5 and C6H5 have been prepared from the reaction of CpRu(PPh3)2Cl with RSSR in CH3OH in presence of NH4Cl. This result contrasts with the oxidative additions of RSSR to CpFe(dppe)1 dppe=PPh2 (CH2)2PPh2 to give [CpFe(dppe)SR]PF6 (C. Diaz et al., J. Organomet. Chem. 516, 59 (1996)). Huckel calculations on model fragments CpFe(PPh3)2 and CpRu(PPh3)2 suggest that the higher electron density of iron could explain the differences observed in reactivity. Possible biological implications are discussed.  相似文献   

6.
Abstract

Reactions of HBr with trans-[W(N2)2(dppe)PPh2Me)2] (1) (dppe = Ph2CH2CH2PPh2) result in protonation of coordinated N2 but no formation of ammonia or hydrazine. The tungsten-containing product depends upon the reaction conditions: (i) in MeOH, the product formed is [WBr(NNH2) (dppe)(PPh2Me)2]HBr2 (2) which converts to the hydride, [WBr2(H)(NNH2(dppe)(PPh2Me)](Br(3), with loss of phosphine in THF or CH2Cl2, (ii) in THF or CH2Cl2, the hydride (3) is formed directly. Reaction of 2 with Na2CO3 in MeOH results in the loss of HBr and the formation of the diazenido complex [WBr(NNH)(dppe)(PPh2Me)2] which reacts further with Na2CO3 in benzene under N2 to lose HBr and form a mixture of 1 and trans-[W(N2)(dppe)2]. The reaction of 1 with aqueous HF forms [WF(NNH2)(dppe)(PPh2Me)2]BF4. The X-ray photoelectron spectra of trans-[M(N2)2 (dppe)2], [MBr(NNH2)(dppe)2Br (M = Mo, W), [WCl(NNH2)(dppe)2]Cl, [WCl(N)(dppe)2]Cl and [WCl(NH) (dppe)2] are reported. In all of these complexes, nitrogen is in a highly reduced form.  相似文献   

7.
A series of mononuclear [M(EAr)2(dppe)] [M = Pd, Pt; E = Se, Te; Ar = phenyl, 2-thienyl; dppe = 1,2-bis(diphenylphosphino)ethane] complexes has been prepared in good yields by the reactions of [MCl2(dppe)] and corresponding ArE with a special emphasis on the aryltellurolato palladium and -platinum complexes for which the existing structural information is virtually non-existent. The complexes have crystallized in five isomorphic groups: (1) [Pd(SePh)2(dppe)] and [Pt(SePh)2(dppe)], (2) [Pd(TePh)2(dppe)] and [Pt(TePh)2(dppe)], (3) [Pd(SeTh)2(dppe)], (4) [Pt(SeTh)2(dppe)] and [Pd(TeTh)2(dppe)], and (5) [Pt(TePh)2(dppe)]. In addition, solvated [Pd(TePh)2(dppe)] · CH3OH and [Pd(TeTh)2(dppe)] · 1/2CH2Cl2 could be isolated and structurally characterized. The metal atom in each complex exhibits an approximate square-planar coordination. The Pd-Se, Pt-Se, Pd-Te, and Pt-Te bonds span a range of 2.4350(7)-2.4828(7) Å, 2.442(1)-2.511(1) Å, 2.5871(7)-2.6704(8) Å, and 2.6053(6)-2.6594(9) Å, respectively, and the respective Pd-P and Pt-P bond distances are 2.265(2)-2.295(2) Å and 2.247(2)-2.270(2) Å. The orientation of the arylchalcogenolato ligands with respect to the M(E2)(P2) plane has been found to depend on the E-M-E bond angle. The NMR spectroscopic information indicates the formation of only cis-[M(EAr)2(dppe)] complexes in solution. The trends in the 31P, 77Se, 125Te, and 195Pt chemical shifts expectedly depend on the nature of metal, chalcogen, and aryl group. Each trend can be considered independently of other factors. The 77Se or 125Te resonances appear as second-order multiplets in case of palladium and platinum complexes, respectively. Spectral simulation has yielded all relevant coupling constants.  相似文献   

8.
The new fluorinated peroxides HOC(CF3)2OOH, HOC(CF32OOC(CF3) 2OH, and (CH3) 3COOC(CF3) 2OH have been prepared by the insertion of hexafluoroacetone into the OH bonds of hydrogen peroxide and t-butyl hydroperoxide. In addition, the alkali metal salts (HOC(CF3) 2OOM (M=Li or Na) and (CH3) 3COOC(CF3) 2ONa have been prepared by neutralization of the corresponding protonic compound with the appropriate metal hydride.The new compounds are safer (i.e., less flammable and less explosive) than analogous or similar hydrocarbon peroxides, though they are somewhat less thermally stable than the parent hydroperoxides.  相似文献   

9.
Abstract

The synthesis of octahedral complexes [SnCl4L2] (L = R2NP(O)(OCH2CF3)(O-p-tolyl): R2N = Me2N (1), Et2N (2), CH2(CH2CH2)2N (3), and O(CH2CH2)2N (4), or L = R2NP(O)(OCH2CF3)(O-p-PhNO2): R2N = Me2N (5), Et2N (6), and O(CH2CH2)2N (7) is described. The new adducts have been characterized by multinuclear (31P, 19F, 119Sn) NMR, IR spectroscopy, and elemental analyses. The solution NMR data show the presence of a mixture of cis and trans isomers. The structure of the complexes in solution was further confirmed by 119Sn NMR spectra, which display a triplet for each isomer, indicating an octahedrally coordinated tin center. The effects of the nature of R and Ar substituents on the donor ability of the P=O group in the ligands R2NP(O)(OCH2CF3)(OAr) were investigated on the basis of 119Sn NMR chemical shifts and used to classify these ligands according to their Lewis basicity.  相似文献   

10.
Oxidation of the complexes trans-[M(CNR)2(dppe)2] (A) (M = Mo or W; R = Me, But or CH3C6H4-4; dppe = Ph2PCH2CH2PPh2) with diiodine or silver (I) salts gives the paramagnetic cations trans-[M(CNR)2(dppe)2]+, (M = Mo, R = CH3C6H4-4; M = W, R = But) and trans-[M(CNR)2(dppe)2]2+ (M = Mo, R = Me or CH3C6H4-4; M = W, R = Me or But). Mixtures of products are generally produced when dichlorine or dibromine are the oxidising agents, however pure salts, the seven-coordinate complex cations [MX(CNC6H4CH3-4)2(dppe)2]+ (B, X = Cl or Br) have been isolated. A simple molecular orbital scheme is proposed for complexes (A) and used to discuss their electronic spectra and their oxidation.  相似文献   

11.
Summary Treatment of complexestrans-[M(CNBu-t)2(dppe)2][(1) M = Mo or W, dppe = Ph2PCH2CH2PPh2] with protic acid gives a mixture of the aminocarbyne complexestrans- pluscis-[M(CNHBu-t)(CNBu-t)(dppe)2]+ (2) and the hydridocompounds [MH(CNBu-t)2(dppe)2]+ (3), whereas reaction with an alkylating agent (R+) appears to give the dialkylaminocarbyne compounds [M(CNRBu-t)(CNBu-t)(dppe)2]+ (4) also as a mixture of thetrans andcis isomers.  相似文献   

12.
Several cis-dioxomolybdenum complexes of two tridentate ONS chelating ligands H2L1 and H2L2 (obtained by condensation of S-benzyl and S-methyl dithiocarbazates with 2-hydroxyacetophenone) have been prepared and characterized. Complexes 1 and 2 are found to be of the form MoO2 (CH3OH) L1?·?CH3OH and MoO2L, respectively, (where L2–?=?dianion of H2L1 and H2L2). The sixth coordination site of the complexes acts as a binding site for various neutral monodentate Lewis bases, B, forming complexes 310 of the type MoO2LB (where B?=?γ-picoline, imidazole, thiophene, THF). The complexes were characterized by elemental analyses, various spectroscopic techniques, (UV-Vis, IR and 1H NMR), measurement of magnetic susceptibility at room temperature, molar conductivity in solution and by cyclic voltammetry. Two of the complexes MoO2(CH3OH) L1?·?CH3OH (1) and MoO2L1(imz) (5) were structurally characterized by single crystal X-ray diffraction. Oxo abstruction reactions of 1 and 5 led to formation of oxomolybdenum(IV) complex of the MoOL type.  相似文献   

13.
The structure and reactivity of α-ketoradicals, derivatives of (CF3)3CC(O)C(O)CF3 (1), were studied by ESR spectroscopy. The photoreduction of α-diketone1 in a solution of cyclohexane in perfluorodipentyl ether results in the formation of radicals of two types, (CF3)3CC(2)(O(4))·C(3)(O(6)H)CF3 (1a) and (CF3)3C·C(OH)C(O)CF3 (1b) in a ∼40∶1 ratio. The degree of delocalization of the spin density in two conformers of radical1a was calculated by the MNDO/PM3 method in the UHF approximation. It was established that radicals1a and1b are capable of reversible dimerization. The rate constant of dimerization and the enthalpy of the radical—dimer equilibrium were measured for radical1a. A decrease in the rate of dimerization of radical1a upon addition of complexing solvents ((CF3)3COH andp-CF3C6H4CF3) was found. The influence of the solvents on the rate of dimerization was also detected for α-ketoradical (CF3)3CC(O)·C(OSiMe2Ph)CF3 (1c). Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 62–67, January, 1998.  相似文献   

14.
Reaction of [Ni(dppe)Cl2/Br2] with AgOTf in CH2Cl2 medium following ligand addition leads to [Ni(dppe)(OSO2CF3)2] and then [Ni(dppe)(RaaiR)](OSO2CF3)2 [RaaiR′ = p–R–C6H4–N=N–C3H2–NN-1–R′,(1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion]. 31P{1H}-NMR confirm that stable bis-chelated square planar Ni(II) azoimine–dppe complex formation with one sharp peaks. The 1H NMR spectral measurements suggest azoimine link is present with lot of phenyl protons in the aromatic region. Considering all the moities there are a lot of different carbon atoms in the molecule which gives many different peaks in the 13C(1H)-NMR spectrum. In the 1H-1H COSY spectrum in the present complexes and contour peaks in the 1H-13C-HMQC spectrum in the present complexes, assign the solution structure and stereoretentive conformation in each complexes.  相似文献   

15.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

16.
Reaction of 1,1′-bis(diphenylphosphino)ferrocene (dppf) with [μ-(SCH2)2NCH2CH2OH]Fe2(CO)6 (A) or [μ-(SCH2)2NCH2CH2SAc]Fe2(CO)6 (C) in refluxing xylene yielded an intramolecular bridging complex [μ-(SCH2)2NCH2CH2OH]Fe2(CO)4(μ-dppf) (1) or [μ-(SCH2)2NCH2CH2SAc]Fe2(CO)4(μ-dppf) (2) in moderate yield. The structures of both complexes were fully characterized by spectroscopic methods and X-ray crystallography, and the electronic structure of 2 was further investigated by UV–vis. The cyclic voltammetry was conducted and the reduction of protons from CF3SO3H (TfOH), HBF4·Et2O, or CF3COOH (TFA) catalyzed by 2 was observed.  相似文献   

17.
On the Reactions of CH3OCl, CF3OCl, CF3OF, and CF3OH with the Superacid System HF/MF5 (M = As, Sb). Preparation and Characterization of CH3OCl(H)+MF6? and CF3OCl(H)+MF6? The preparation of the chlorine oxoniumsalts CH3OCl(H)+MF6? and CF3OCl(H)+MF6? by protonation of CH3OCl and CF3OCl in the superacid solution of HF/MF5 (M = As, Sb) is described. However CF3OF and CF3OH have not been protonated under the same conditions. In the case of CF3OH the formation of F2CO · MF5 is observed. The novel compounds are characterized by nmr- and vibrational spectroscopy.  相似文献   

18.
The synthesis, IR spectrum, and first‐principles characterization of CF3CH(ONO)CF3 as well as its use as an OH radical source in kinetic and mechanistic studies are reported. CF3CH(ONO)CF3 exists in two conformers corresponding to rotation about the RCO? NO bond. The more prevalent trans conformer accounts for the prominent IR absorption features at frequencies (cm?1) of 1766 (N?O stretch), 1302, 1210, and 1119 (C? F stretches), and 761 (O? N? O bend); the cis conformer contributes a number of distinct weaker features. CF3CH(ONO)CF3 was readily photolyzed using fluorescent blacklamps to generate CF3C(O)CF3 and, by implication, OH radicals in 100% yield. CF3CH(ONO)CF3 photolysis is a convenient source of OH radicals in the studies of the yields of CO, CO2, HCHO, and HC(O)OH products which can be difficult to measure using more conventional OH radical sources (e.g., CH3ONO photolysis). CF3CH(ONO)CF3 photolysis was used to measure k(OH + C2H4)/k(OH + C3H6) = 0.29 ± 0.01 and to establish upper limits of 16 and 6% for the molar yields of CO and HC(O)OH from the reaction of OH radicals with benzene in 700 Torr of air at 296 K. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 159–165, 2003  相似文献   

19.
It was demonstrated that the reaction of 2,2-bis(trifluoromethyl)oxirane (1) with variety of alcohols could be successfully carried out under phase transfer catalysis conditions using sodium or potassium hydroxide as a base. For example, reaction of CH3OH, C2H5OCH2CH2OH, HOCH2CH2OH with one or two moles of 1 in the presence of the catalyst [(C4H9)4N+HSO4] gives the corresponding tertiary alcohols R[OCH2C(CF3)2OH]n (n=1 or 2) in 43-53% yield, along with some O[CH2C(CF3)2OH]2. Benzyl alcohol and phenol under similar conditions are less active, producing in the reaction with 1 the corresponding adducts ArOCH2C(CF3)2OH in 31-35% yield. Fluorinated alcohols, such as CF3CH2OH, ClCF2CH2OH, HCF2CF2CH2OH have much higher reactivity towards 1 giving ring opening products in 82-97% yield. Even in the reaction of hindered hexafluoro-iso-propanol the corresponding adduct was isolated in 43% yield. Surprisingly, the reaction of iso-propanol and epoxide 1, results in the formation of O[CH2C(CF3)2OH]2 as a major product, isolated in 56% yield. Possible mechanism for the formation of the last product was proposed.  相似文献   

20.
The new mononuclear palladium(II) and platinum(II) [M(p-SC6F4(CF3))2(dppe)] complexes M = Pd 1a, Pt 2a; [M(o-SC6H4(CF3))2(dppe)] M = Pd 1d, Pt 2d as well as the previously known [M(SC6F5)2(dppe)] M = Pd 1b, Pt 2b and [M(p-SC6HF4)2(dppe)] M = Pd 1c, Pt 2c, have been used as metalloligands for the preparation of the heteroleptic bimetallic complexes [M2(μ-SRf)2(dppe)2](SO3CF3)2 M = Pd, Rf = p-C6F4(CF3) 3a, C6F53b, p-C6HF43c, o-C6H4(CF3) 3d; M = Pt, Rf = p-C6F4(CF3) 4a, C6F54b, p-C6HF44c and o-C6H4(CF3) 4d. Variable temperature 19F NMR experiments show that the fluorothiolate bridged bimetallic compounds are fluxional in solution whereas mononuclear complexes are not. The solid state X-ray diffraction structures of [Pd(p-SC6HF4)2(dppe)] (1c), [Pt(SC6F5)2(dppe)] (2b) and [Pt(o-SC6H4(CF3))2(dppe)] (2d) show square-planar coordination around the metal centers. The solid state molecular structure of the compound [Pt2(μ-o-SC6H4(CF3))2(dppe)2](SO3CF3)2 (4d), exhibit a planar [Pt2(μ-S)2] ring with the sulfur substituents in an anti configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号