首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adsorption of CO2 and CH4 in a mixed-ligand metal-organic framework (MOF) Zn 2(NDC) 2(DPNI) [NDC = 2,6-naphthalenedicarboxylate, DPNI = N, N'-di-(4-pyridyl)-1,4,5,8-naphthalene tetracarboxydiimide] was investigated using volumetric adsorption measurements and grand canonical Monte Carlo (GCMC) simulations. The MOF was synthesized by two routes: first at 80 degrees C for two days with conventional heating, and second at 120 degrees C for 1 h using microwave heating. The two as-synthesized samples exhibit very similar powder X-ray diffraction patterns, but the evacuated samples show differences in nitrogen uptake. From the single-component CO2 and CH4 isotherms, mixture adsorption was predicted using the ideal adsorbed solution theory (IAST). The microwave sample shows a selectivity of approximately 30 for CO2 over CH4, which is among the highest selectivities reported for this separation. The applicability of IAST to this system was demonstrated by performing GCMC simulations for both single-component and mixture adsorption.  相似文献   

2.
In this work, a computational study is performed to evaluate the adsorption-based separation of CO(2) from flue gas (mixtures of CO(2) and N(2)) and natural gas (mixtures of CO(2) and CH(4)) using microporous metal organic framework Cu-TDPAT as a sorbent material. The results show that electrostatic interactions can greatly enhance the separation efficiency of this MOF for gas mixtures of different components. Furthermore, the study also suggests that Cu-TDPAT is a promising material for the separation of CO(2) from N(2) and CH(4), and its macroscopic separation behavior can be elucidated on a molecular level to give insight into the underlying mechanisms. On the basis of the single-component CO(2), N(2), and CH(4) isotherms, binary mixture adsorption (CO(2)/N(2) and CO(2)/CH(4)) and ternary mixture adsorption (CO(2)/N(2)/CH(4)) were predicted using the ideal adsorbed solution theory (IAST). The effect of H(2)O vapor on the CO(2) adsorption selectivity and capacity was also examined. The applicability of IAST to this system was validated by performing GCMC simulations for both single-component and mixture adsorption processes.  相似文献   

3.
We use a fast density functional theory (a "slab-DFT") and the polydisperse independent ideal slit-pore model to predict gas mixture adsorption in active carbons. The DFT is parametrized by fitting to pure gas isotherms generated by Monte Carlo simulation of adsorption in model graphitic slit-pores. Accurate gas molecular models are used in our Monte Carlo simulations with gas-surface interactions calibrated to a high surface area carbon, rather than a low surface area carbon as in all previous work of this type, as described in part 1 of this work. We predict the adsorption of binary mixtures of carbon dioxide, methane, and nitrogen on two active carbons up to about 30 bar at near-ambient temperatures. We compare two sets of results; one set obtained using only the pure carbon dioxide adsorption isotherm as input to our pore characterization process, and the other obtained using both pure gas isotherms as input. We also compare these results with ideal adsorbed solution theory (IAST). We find that our methods are at least as accurate as IAST for these relatively simple gas mixtures and have the advantage of much greater versatility. We expect similar results for other active carbons and further performance gains for less ideal mixtures.  相似文献   

4.
In this work we report new experimental data of pure and binary adsorption equilibrium of propane and propylene on zeolite 4A at 423 and 473 K. The pressure range studied was 0–500 kPa, which is the entire pressure range used in PSA–VSA (Pressure–Vacuum Swing Adsorption) units. The amount adsorbed of propane is much higher than that reported in previous literature. Propane diffusivity was estimated from uptake curves in the linear isotherm region. Adsorption of propane was extremely slow and equilibrium was established only after three days of adsorbate–adsorbent contact. The IAST (Ideal Adsorbed Solution Theory) using the Generalized Dubinin model to describe the pure propylene equilibrium and the Langmuir model for propane predicted with acceptable accuracy the binary adsorption data. Alternatively, the multisite model of Nitta was used to fit pure component isotherms and used in the IAST. Predictions were worse than those with the other strategy.  相似文献   

5.
In this work, we report new experimental data of pure and binary adsorption equilibria of carbon dioxide and methane on the activated carbon RB2 at 273 and 298 K. The pressure range studied were 0–3.5 MPa for pure gases and 0–0.1 MPa for mixtures. The combination of the generalized Dubinin model to describe the pure CO2 and CH4 isotherms with the IAST (Ideal Adsorbed Solution Theory) for the mixtures provide a method for the calculation of the binary adsorption equilibria. This formulation predicts with acceptable accuracy the binary adsorption data and can easily be integrated in general dynamic simulation of PSA (pressure swing adsorption process) adsorption columns. It involves only three parameters, independent of the temperature, and directly determined with only one adsorption isotherm of CO2.  相似文献   

6.
Mass transport of chemical mixtures in nanoporous materials is important in applications such as membrane separations, but measuring diffusion of mixtures experimentally is challenging. Methods that can predict multicomponent diffusion coefficients from single-component data can be extremely useful if these methods are known to be accurate. We present the first test of a method of this kind for molecules adsorbed in a metal-organic framework (MOF). Specifically, we examine the method proposed by Skoulidas, Sholl, and Krishna (SSK) ( Langmuir, 2003, 19, 7977) by comparing predictions made with this method to molecular simulations of mixture transport of H 2/CH 4 mixtures in CuBTC. These calculations provide the first direct information on mixture transport of any species in a MOF. The predictions of the SSK approach are in good agreement with our direct simulations of binary diffusion, suggesting that this approach may be a powerful one for examining multicomponent diffusion in MOFs. We also use our molecular simulation data to test the ideal adsorbed solution theory method for predicting binary adsorption isotherms and a method for predicting mixture self-diffusion coefficients.  相似文献   

7.
The GCMC (grand canonical Monte Carlo) simulation technique was used to predict the competition adsorption characteristics of benzene and propene in different pore systems of MCM-22. The nine-site model of benzene was used, which proved to be effective and efficient. The zeolite was divided into three adsorption sites following a simulated annealing method. It is found that benzene and propene have the same preferential adsorption site and a similar adsorption order in different sites. Moreover, the pure and mixture isotherms of the three sites are drawn. From the isotherms, we obtained a selectivity reversal of the mixture isotherms of benzene and propene in different sites. It is also noted that the competition adsorption in the three adsorption sites for the two adsorbates can fall into three successive steps and the adsorption order of propene in mixture in these three sites is S3→S1→S2. A new model is presented to predict the benzene and propene adsorption equilibrium in MCM-22. This approach yields better multicomponent equilibrium predictions than ideal adsorbed solution theory (IAST). Isotherms at different mole fraction of benzene in gas phase indicate an advantage to increase the feed radio of benzene and propene. Thus, this work is helpful for a better understanding of the adsorption mechanism of benzene and propene in MCM-22 and hence the relation of the catalytic properties of the zeolite to its structure.  相似文献   

8.
We present the results of Monte Carlo simulations of the adsorption of single-component ethane and ethylene and of equimolar mixtures of these two gases on bundles of closed, single-walled carbon nanotubes. Two types of nanotube bundles were used in the simulations: homogeneous (i.e., those in which all the nanotubes have identical diameters) and heterogeneous (those in which nanotubes of different diameters are allowed). We found that at the same pressure and temperature more ethane than ethylene adsorbs on the bundles over the entire range of pressures and temperatures explored. The simulation results for the equimolar mixtures show that the pressure at which maximum separation is attained is a very sensitive function of the diameter of the nanotubes present in the bundles. Simulations using heterogeneous bundles yield better agreement with single-component experimental data for isotherms and isosteric heats than those obtained from simulations using homogeneous bundles. Possible applications of nanotubes in gas separation are discussed. We explored the effect of the diameter of the nanotubes on the separation ability of these sorbents, both for the internal and for the external sites. We found that substrate selectivity is a decreasing function of temperature.  相似文献   

9.
A new equation of competitive isotherms was derived in the framework of the ideal adsorbed solution (IAS) that predicts multisolute adsorption isotherms from single-solute isotherms. The IAS theory makes this new isotherm thermodynamically consistent, whatever the saturation capacities of these single-component isotherms. On a Kromasil-C(18) column, with methanol-water (80/20 v/v) as the mobile phase, the best single-solute adsorption isotherm of both toluene and ethylbenzene is the liquid-solid extended multilayer BET isotherm. Despite a significant difference between the monolayer capacities of toluene (370 g/l) and ethylbenzene (170 g/l), the experimental adsorption data fit very well to single-component isotherms exhibiting the same capacities (200 g/l). The new competitive model was used for the modeling of the elution band profiles of mixtures of the two compounds. Excellent agreement between experimental and calculated profiles was observed, suggesting that the behavior of the toluene-ethylbenzene adsorbed phase on the stationary phase is close to ideal. For example, the concentrations measured for the intermediate plateau obtained in frontal analysis differ by less than 2% from those predicted by the IAS model.  相似文献   

10.
The competitive adsorption processes inevitably present in chromatographic separations of complex mixtures have not been extensively studied. This is partly due to the difficulty of measuring true competitive isotherms, in which all system parameters (including competitor concentrations) are held constant. We report a novel approach to determining competitive protein adsorption isotherms in which the competitor concentration is held constant across the entire isotherm. By using the heme prosthetic group in cytochrome b5 as a quantitative spectrophotometric label, competitive isotherms between cytochrome b5 and alpha-lactalbumin can be constructed. Similarly, manganese-substituted protoporphyrin IX heme replacement allows the non-perturbing labeling of individual cytochrome b5 conservative surface charge mutants by replacement of a single atom in the interior of the protein. This labeling allows the study of competition between cytochrome b5 charge mutants of identical size and shape, which differ only in charge arrangement. Using these techniques, the effect of competing species on equilibrium behavior and the apparent heterogeneity of anion-exchange adsorbents in the presence of competitors can be quantitatively studied by fitting the data to two popular single-component binding models, the Temkin and the Langmuir-Freundlich (L-F) isotherms.  相似文献   

11.
Adsorption equilibrium of binary pairs of lysozyme (LYS), cytochrome c (CYC) and ribonuclease A (RNase) has been measured on different cation-exchange media at various solution conditions. Adsorption patterns largely follow the intrinsic protein–surface interactions, but can differ significantly for different pairs or even for one pair at different solution conditions. LYS/CYC adsorption shows similar behavior on all the adsorbents examined, with competitive adsorption dominated by LYS and the presence of LYS reducing the adsorption of CYC significantly. Simultaneous and sequential measurements for LYS/CYC show that the order of adsorption does not have a significant effect on the adsorption equilibrium. For LYS/RNase, LYS is consistently more strongly adsorbed. For CYC/RNase, both proteins can display significant adsorption, depending on the pH and salt concentration. A model based on colloidal energetics is developed to calculate the binary adsorption isotherms using parameter values obtained from single-component isotherms. The calculated adsorption is in good agreement with experimental results, with significantly better representation than for other commonly used binary isotherms.  相似文献   

12.
The adsorption capacity and selectivity of carbon dioxide and nitrogen at 298 K have been evaluated for two series of MMOFs built on metal paddle-wheel building units, including non-interpenetrated Zn(BDC)(TED)(0.5) (1), Zn(BDC-OH)(TED)(0.5) (2), Zn(BDC-NH(2))(TED)(0.5) (3), and interpenetrated Zn(BDC)(BPY)(0.5) (4), Zn(BDC)(DMBPY)(0.5) (5), Zn(NDC)(BPY)(0.5) (6) and Zn(NDC)(DMBPY)(0.5) (7) framework structures. The ideal adsorbed solution theory (IAST) has been employed to predict the adsorption selectivity of CO(2)-N(2) binary mixtures on all seven MMOFs using single-component experimental adsorption isotherm data. The applicability of IAST to these systems is verified by GCMC simulations performed on both single- and multi-component gases.  相似文献   

13.
14.
The ability of activated carbon to adsorb three acidic dyes, namely, Acid Blue 80 (AB80), Acid Red 114 (AR114), and Acid Yellow (AY117), from wastewater has been studied at 20 degrees C. The three single-component systems and the three binary equilibrium systems have been measured experimentally. The three single-component isotherms were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Sips equations. The Redlich-Peterson equation gave the lowest errors using the sum of the squares of the errors closely followed by the Sips and Langmuir equations; the Freundlich fits were significantly worse. The three bisolute experimental equilibrium sets of data were analyzed by incorporating the previous four single-component isotherm equations into the ideal adsorbed solution theory (IAST). The solution methods for each of the four isotherm equations are presented in the paper, and the predicted results for the three bisolute systems, using the four isotherm equations, are compared. For the three bisolute systems (AB80 + AR114, AB80 + AY117, and AR114 + AY117), the Redlich-Peterson isotherm gives the best correlation with the experimental isotherm data.  相似文献   

15.
The adsorption of pure methane and ethane in BPL activated carbon has been measured at temperatures between 264 and 373 K and at pressures up to 3.3 MPa with a bench-scale high-pressure open-flow apparatus. The same apparatus was used to measure the adsorption of binary methane/ethane mixtures in BPL at 301.4 K and at pressures up to 2.6 MPa. Thermodynamic consistency tests demonstrate that the data are thermodynamically consistent. In contrast to two sets of data previously published, we found that the adsorption of binary methane/ethane in BPL behaves ideally (in the sense of obeying ideal adsorbed solution theory, IAST) throughout the pressure and gas-phase composition range studied. A Tian-Calvet type microcalorimeter was used to measure low-pressure isotherms, the isosteric heats of adsorption of pure methane and ethane in BPL activated carbon, and the individual heats of adsorption in binary mixtures, at 297 K and at pressures up to 100 kPa. The mixture heats of adsorption were consistent with IAST.  相似文献   

16.
Cd2+和Ni2+在粉煤灰上的吸附特性   总被引:2,自引:1,他引:1  
考察了粉煤灰对Cd2+和Ni2+的单组分吸附和双组分吸附性能。结果表明,粉煤灰可有效吸附水溶液中的Cd2+和Ni2+,去除率随pH升高而增加。吸附约60min后趋于平衡。粉煤灰对Ni2+的吸附容量高于Cd2+。单组分吸附平衡符合Freundlich模型和Redlich Peterson (R P)模型。双组分吸附时,Ni2+和Cd2+之间存在明显的竞争吸附效应;随干扰离子浓度升高,竞争吸附效应增强。不同模型拟合结果表明,双组分吸附平衡符合Freundlich竞争吸附模型。脱附实验表明,Cd2+比Ni2+易于脱附;0.1mol/L HCl、0.1mol/L HNO3 和0.05mol/L H2SO4的脱附效果接近,对Cd2+脱附率>60%,对Ni2+脱附率>35%。  相似文献   

17.
In this paper, we present the results of the prediction of the high-pressure adsorption equilibrium of supercritical gases (Ar, N2, CH4, and CO2) on various activated carbons (BPL, PCB, and Norit R1 extra) at various temperatures using a density-functional-theory-based finite wall thickness (FWT) model. Pore size distribution results of the carbons are taken from our recent previous work,(1,2) using this approach for characterization. To validate the model, isotherms calculated from the density functional theory (DFT) approach are comprehensively verified against those determined by grand canonical Monte Carlo (GCMC) simulation, before the theoretical adsorption isotherms of these investigated carbons calculated by the model are compared with the experimental adsorption measurements of the carbons. We illustrate the accuracy and consistency of the FWT model for the prediction of adsorption isotherms of the all investigated gases. The pore network connectivity problem occurring in the examined carbons is also discussed, and on the basis of the success of the predictions assuming a similar pore size distribution for accessible and inaccessible regions, it is suggested that this is largely related to the disordered nature of the carbon.  相似文献   

18.
The adsorption isotherms of (−)- and (+)-methyl mandelate from a hexane-isopropanol (90:10) solution were measured on a chromatographic column packed with 4-methylcellulose tribenzoate coated on silica. These isotherms are accounted for by a bi-Langmuir isotherm model, the two Langmuir terms having widely different initial slopes and saturation capacities, but each term having the same saturation capacity for the two enantiomers. The competitive isotherms were also measured. They are in excellent agreement with the prediction of a competitive bi-Langmuir model based on the single-component isotherms. The individual band profiles are in agreement with the profiles calculated from these isotherms. Thus, a simplified competitive isotherm can be used to model a separation on a chiral stationary phase the recognition mechanism of which is not well identified and the adsorption behavior of which is certainly not ideal.  相似文献   

19.
Large-scale computational screening of thirty thousand zeolite structures was conducted to find optimal structures for separation of ethane/ethene mixtures. Efficient grand canonical Monte Carlo (GCMC) simulations were performed with graphics processing units (GPUs) to obtain pure component adsorption isotherms for both ethane and ethene. We have utilized the ideal adsorbed solution theory (IAST) to obtain the mixture isotherms, which were used to evaluate the performance of each zeolite structure based on its working capacity and selectivity. In our analysis, we have determined that specific arrangements of zeolite framework atoms create sites for the preferential adsorption of ethane over ethene. The majority of optimum separation materials can be identified by utilizing this knowledge and screening structures for the presence of this feature will enable the efficient selection of promising candidate materials for ethane/ethene separation prior to performing molecular simulations.  相似文献   

20.
The inverse method of isotherm determination consists in calculating the numerical values of the coefficients of an isotherm model that give a set of chromatographic profiles in best possible agreement with the set of experimental profiles available. This method was applied to determine the adsorption isotherms of the 1-indanol enantiomers on a cellulose tribenzoate chiral stationary phase. Both single-component and competitive isotherms were determined by using no more than one or two overloaded band profiles. The isotherms determined from the overloaded band profiles agreed extremely well with the isotherms determined by frontal analysis. Several isotherm models were used and tested. The best-fit isotherm was selected by means of statistical evaluation of the results. The results show that the adsorption is best characterized with a model describing heterogeneous adsorption with bimodal adsorption energy distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号