共查询到14条相似文献,搜索用时 0 毫秒
1.
Y. Benveniste 《Journal of the mechanics and physics of solids》2006,54(4):708-734
An arbitrarily curved three-dimensional anisotropic thin interphase between two anisotropic solids is considered. The purpose of this study is to model this interphase as a surface between its two neighbouring media by means of appropriately devised interface conditions on it. The analysis is carried out in the setting of unsteady heat conduction and dynamic elasticity, and makes use of the simple idea of a Taylor expansion of the relevant fields in thin regions. It consists of a generalization of a previous study by Bövik [1994. On the modelling of thin interface layers in elastic and acoustic scattering problems. Q. J. Mech. Appl. Math. 47, 17-42] which was confined to the isotropic setting. The remarkable feature of the presently derived anisotropic interface model is that formally it has a more compact form than that of Bövik's isotropic version. This is achieved by a judicious choice of surface differential operators which have been used in the derivation, and makes possible to show that several previously known classical interface models are recovered as special cases of the one obtained in this study, once suitable assumptions are made on the magnitude of the conductivity and elasticity tensors of the interphase. 相似文献
2.
《International Journal of Solids and Structures》2014,51(15-16):2865-2877
This paper proposes a procedure to deal with n-layered inclusion based composites with imperfect interfaces (which conditions consist of displacement or stress vector jumps) respecting spherical symmetry. For that purpose, “discontinuity matrices” have been introduced. These matrices have been derived for several classical interface-models and an asymptotic method has been used to determine some of them. A self-consistent condition based on a strain-energy equivalence in the case of inclusion-matrix type composite materials is restated for n-layered inclusions with imperfect interfaces and applied to get estimates of such composites materials. The remarkable feature of the presently self consistent approach is that it does not need any tedious algebra providing the attached interface models respect the spherical symmetry. The present Generalized Self Consistent Model (GSCM) is then used to study size effects and mismatch in composites reinforced by coated inclusions. 相似文献
3.
The paper addresses the problem of calculating the local fields and effective transport properties and longitudinal shear stiffness of elliptic fiber composite with imperfect interface. The Rayleigh type representative unit cell approach has been used. The micro geometry of composite is modeled by a periodic structure with a unit cell containing multiple elliptic inclusions. The developed method combines the superposition principle, the technique of complex potentials and certain new results in the theory of special functions. An appropriate choice of the potentials provides reducing the boundary-value problem to an ordinary, well-posed set of linear algebraic equations. The exact finite form expression of the effective stiffness tensor has been obtained by analytical averaging the local gradient and flux fields. The convergence of solution has been verified and the parametric study of the model has been performed. The obtained accurate, statistically meaningful results illustrate a substantial effect of imperfect interface on the effective behavior of composite. 相似文献
4.
The electroelastic coupling interaction between multiple screw dislocations and a circular inclusion with an imperfect interface
in a piezoelectric solid is investigated. The appointed screw dislocation may be located either outside or inside the inclusion
and is subjected to a line charge and a line force at the core. The analytic solutions of electroelastic fields are obtained
by means of the complex-variable method. With the aid of the generalized Peach–Koehler formula, the explicit expressions of
image forces exerted on the piezoelectric screw dislocations are derived. The motion and the equilibrium position of the appointed
screw dislocation near the circular interface are discussed for variable parameters (interface imperfection, material electroelastic
mismatch, and dislocation position), and the influence of the nearby parallel screw dislocations is also considered. It is
found that the piezoelectric screw dislocation is always attracted by the electromechanical imperfect interface. When the
interface imperfection is strong, the impact of material electroelastic mismatch on the image force and the equilibrium position
of the dislocation becomes weak. Additionally, the effect of the nearby dislocations on the mobility of the appointed dislocation
is very important. 相似文献
5.
On the interaction between a dislocation and a circular inhomogeneity with imperfect interface in antiplane shear 总被引:1,自引:0,他引:1
L. J. Sudak 《Mechanics Research Communications》2003,30(1):115
The solution of appropriate elasticity problems involving the interaction between inclusions and dislocations plays a fundamental role in many practical and theoretical applications, namely, it increases the understanding of material defects thereby providing valuable insight into the mechanical behavior of composite materials.Although the problem of a three-phase circular inclusion interacting with a dislocation in antiplane shear has been presented [Xiao and Chen, Mech. Mater. 32 (2000) 485], the analysis is limited to the classical perfect bonding condition. The current paper considers the solution for a homogeneous circular inclusion interacting with a dislocation under thermal loadings in antiplane shear. The bonding along the inhomogeneity–matrix interface is considered to be imperfect with the assumption that the interface imperfections are constant. It is found that when the inhomogeneity is soft, regardless of the level of interface imperfection, the inhomogeneity will always attract the dislocation. As a result, no equilibrium positions are available. Alternatively, when the inhomogeneity is hard, an unstable equilibrium position is found which depends on the imperfect interface condition and the shear moduli ratio μ2/μ1. 相似文献
6.
Interface imperfection can significantly affect the mechanical properties and failure mechanisms as well as the strength and toughness of nanocomposites. The elastic behavior of a screw dislocation in nanoscale coating with imperfect interface is studied in the three-phase composite cylinder model. The interface between inner nanoin- homogeneity and intermediate coating is assumed as perfectly bonded. The bonding between intermediate coating and outer matrix is considered to be imperfect with the assumption that interface imperfection is uniform, and a linear spring model is adopted to describe the weakness of imperfect interface. The explicit expression for image force acting on dislocation is obtained by means of a complex variable method. The analytic results indicate that inner interface effect and outer interface imperfection, simultaneously taken into account, would influence greatly image force, equilibrium position and stability of dislocation, and various critical parameters that would change dislocation stability. The weaker interface is a very strong trap for glide dislocation and, thus, a more effective barrier for slip transmission. 相似文献
7.
Two-dimensional antiplane time-harmonic Green’s functions for a circular inhomogeneity with an imperfect interface are derived. Here the linear spring model with vanishing thickness is employed to characterize the imperfect interface. Explicit expressions for the displacement and the stress fields induced by time-harmonic antiplane line forces located both in the unbounded matrix and in the circular inhomogeneity are presented. When the circular frequency approaches zero, our results reduce to those for the static case. Numerical results are presented to show the influence of the frequency and the imperfection of the interface on the stress and displacement fields. 相似文献
8.
Shiqun Guo 《Archive of Applied Mechanics (Ingenieur Archiv)》2009,79(8):709-723
This paper is concerned with the elastic wave scattering induced by a penny-shaped interface crack in coated materials. Using the integral transform, the problem of wave scattering is reduced to a set of singular integral equations in matrix form. The singular integral equations are solved by the asymptotic analysis and contour integral technique, and the expressions for the stress and displacement as well as the dynamic stress intensity factors (SIFs) are obtained. Using numerical analysis, this approach is verified by the finite element method (FEM), and the numerical results agree well with the theoretical results. For various crack sizes and material combinations, the relations between the SIFs and the incident frequency are analyzed, and the amplitudes of the crack opening displacements (CODs) are plotted versus incident wavenumber. The investigation provides a theoretical basis for the dynamic failure analysis and nondestructive evaluation of coated materials. 相似文献
9.
以单纤维十字型横向拉伸试验为研究对象,对纤维/基体界面采用弹性-软化双线性内聚力模型,建立了纤维复合材料在横向拉伸作用下界面法向失效过程的解析模型。得到了沿纤维/基体圆周界面的法向应力分布,纤维/基体界面的状态与界面承载力和单纤维复合材料承载力的关系,以及内聚力参数和试件几何尺寸对它们的影响。结果表明:纤维/基体圆周界面在脱粘前经历全部弹性及弹性+软化两种状态;当界面为弹性状态时,界面法向应力随界面强度线性增加;当界面为弹性+软化状态时,界面软化范围随界面裂纹萌生位移的增加而增大;界面初始脱粘位置与拉伸荷载方向重合;界面初始脱粘时的界面承载力随界面强度及界面裂纹萌生位移的增加而增加,随界面裂纹生成位移的增加而降低;单纤维复合材料的脱粘荷载受基体截面尺寸的影响,当纤维体积含量相同时,沿荷载方向截面尺寸的增大对提高脱粘荷载更显著。 相似文献
10.
Interphases are often modeled as interfaces with zero thickness using jump conditions that can be developed based on approximate shell or membrane models which are valid for specific limited ranges of the elastic material parameters. For a two-dimensional problem it has been shown (Rubin and Benveniste, 2004) that the Cosserat model of a finite thickness interphase is a unified model that is accurate over the full range of elastic parameters. In contrast, many other interphase models are valid for only limited ranges of the elastic parameters. In this paper, the accuracy of different Cosserat models of a finite thickness interphase that connects a spherical inclusion to an infinite matrix is examined. Specifically, four Cosserat interphase models are considered: a general shell (GS), a membrane-like shell (MS), a simple shell (SS) and a generalized membrane (GM). The models (GS) and (MS) both satisfy restrictions on the strain energy function of the interphase that ensure exact solutions for all homogeneous three-dimensional deformations, while the other models (SS) and (GM) do not satisfy these restrictions. The importance of these restrictions is examined for the three-dimensional inhomogeneous inclusion problem being considered. This is the first test of the accuracy of an elastic interphase model for a spherical interphase. 相似文献
11.
12.
J.D. Clayton P.W. Chung M.A. Grinfeld W.D. Nothwang 《Mechanics Research Communications》2008,35(1-2):57
A continuum theory describing the behavior of dielectric materials containing mobile, electrically charged vacancies is formulated. The theory is implemented to simulate diffusion, at the nanometer scale, of oxygen vacancies in acceptor-doped barium strontium titanate (BST) thin films in the paraelectric state. In the simulations, charged vacancies coalesce into boundary layers of large concentration at potential-free interfaces, with increases in the local electric field intensity emerging near such boundaries. Upon relating this increase to a reduction in the energy barrier for charge transmission from film to electrode at the interface, and accepting an inverse relationship between the concentrations of doping elements and mobile oxygen vacancies, the model shows agreement with observed trends of decreasing current losses with increased doping. 相似文献
13.
A vertical melt column set up between an upper heating rod and a lower sample rod, i.e. the so-called halfzone system, is a convenient experimental tool for studying convection in the melt in floating-zone crystal growth. In order to help understand the convection observed in the melt column, a computer model has been developed to describe steady state, axisymmetrical thermocapillary flow and natural convection in the melt. The governing equations and boundary conditions are expressed in general non-orthogonal curvilinear co-ordinates in order to accurately treat the unknown melt/solid interface as well as all other physical boundaries in the system. The effects of key dimensionless variables on the following items are discussed: (1)convection and temperature distribution in the melt; (2) the shape of the melt/solid interface; (3) the height of the melt column. These dimensionless variables are the Grashof, Marangoni and Prandtl numbers. 相似文献