首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
咪唑修饰萘酰亚胺与DNA的作用及其细胞毒性   总被引:1,自引:0,他引:1  
设计合成了咪唑及其烷基化咪唑阳离子基团修饰的萘酰亚胺衍生物。利用紫外-可见吸收光谱、荧光光谱、圆二色谱和荧光共振能量转移等方法研究了它们与小牛胸腺DNA(CT DNA)和G-四链体DNA的相互作用。这些化合物对端粒DNA序列的G-四链体有很高的结合能力(K_α4×10~6 L·mol~(-1)),并能够稳定G-四链体。DNA粘度实验结果表明萘酰亚胺衍生物与CT DNA通过插入作用结合。Autodock分子对接模拟结果表明这些化合物通过疏水作用、静电作用或氢键等方式与人体端粒G-四链体的loop和沟槽部分结合。咪唑阳离子基团修饰的萘酰亚胺衍生物4a–c能够定位于细胞核,对肺癌细胞的细胞毒性要高于咪唑基团修饰的萘酰亚胺衍生物3。化合物4a和4b对肺癌细胞A549的细胞毒性明显高于正常人胚肺成纤维细胞MRC-5,表现出良好的抗癌活性。  相似文献   

2.
G-四链体是富含鸟嘌呤碱基的DNA序列通过氢键相互作用形成的四链螺旋结构. 通过小分子化合物诱导与稳定端粒G-四链体从而抑制端粒酶活性是一种新的抗癌策略. 为了研究一系列吲哚并喹啉衍生物与端粒G-四链体的相互作用, 探究其相互作用模式, 从而为实现基于G-四链体结构的药物合理设计提供依据, 使用分子对接的方法构建了吲哚并喹啉衍生物与G-四链体复合物结构, 在此基础上进行分子动力学模拟, 并使用线性相互作用能(LIE)方法计算了化合物与G-四链体的结合自由能. 结果表明: 化合物与G-四链体的主要相互作用方式由氢键、静电与π-π堆积作用构成, 侧链末端基团类型和侧链的长短是影响相互作用强弱的重要因素. 通过LIE方法计算的结合自由能与实验结果基本吻合, 相关度达到r2=0.79. 并且, 基于预测的结合模式, 总结了拥有更高活性的新型吲哚并喹啉衍生物应具有的几个结构特征.  相似文献   

3.
利用电喷雾质谱(ESI-MS)研究了12种天然产物小分子与人类端粒G-四链体结构的非共价相互作用和识别功能, 比较了不同小分子与人类端粒G-四链体的结合强弱, 发现了一种新的识别小分子——防己诺林碱对人类端粒G-四链体有很好的结合. 通过质谱升温实验比较了小分子结合对G-四链体热稳定性的影响, 防己诺林碱的结合使G-四链体的离子的解离温度(T1/2)上升到200 ℃. 利用分子模拟对G-四链体DNA与小分子结合的模式以及稳定性进行了探讨, 给出了防己诺林碱可能的结合位点和结合模式, Autodock计算出来的结合能约为-31.5 kJ·mol-1. 同原来的平面型分子不同, 防己诺林碱是一类新型结构的分子, 为设计合成新型G-四链体识别分子提供了新的结构模型.  相似文献   

4.
采用计算机辅助药物设计方法,将以甲基蓝为先导化合物设计的配体分子与端粒DNA、原癌基因cmyc、c-kit2等形成的G-四链体三维结构进行分子对接模拟,发现目标化合物选择性靶向c-myc G-四链体,其对接分值为7.74。以吩噻嗪为起始原料合成出目标化合物,其结构经~1H-NMR、~(13)C-NMR和HRMS等确证。采用圆二色光谱实验测试了化合物与端粒、原癌基因c-myc和c-kit2等DNA的相互作用,结果表明目标化合物选择性诱导c-myc DNA形成G-四链体。  相似文献   

5.
本文合成了两种三联吡啶修饰的萘酰亚胺化合物NPI1和NPI2,并利用紫外-可见吸收光谱(UV-Vis)、圆二色光谱(CD)、荧光共振能量转移(FRET)等方法研究了它们与双链CT DNA和Htelo G-四链体DNA的相互作用。实验结果表明,化合物NPI1和NPI2对G-四链体DNA具有很好的结合能力和选择性,溶液中的碱金属离子种类和萘酰亚胺基团上的取代基对NPI1和NPI2与DNA的作用有很大的影响。在含K+的缓冲液中,NPI2与G-四链体的结合常数达到1.06×108 L/mol,是与双链CT DNA结合常数的268倍。圆二色谱结果表明在不含碱金属离子的溶液中,NPI1和NPI2可诱导Htelo DNA形成反平行结构G-四链体。Autodock分子对接模拟表明NPI1和NPI2可以通过堆积作用、静电作用、氢键等作用方式与G-四链体结合,使得它们对G-四链体具有很高亲和性(Ka>107 L/mol)。  相似文献   

6.
利用紫外-可见吸收光谱、荧光光谱、圆二色谱(CD)等方法研究了色胺修饰竹红菌素(DTrpHA)及其稀土离子配位聚合物(Y3+-DTrpHA, La3+-DTrpHA)与小牛胸腺DNA (CT DNA)和G-四链体22AG的相互作用.结果表明, DTrpHA及其配位聚合物中的色胺基团和竹红菌素基团均参与和双链CT DNA的作用,作用方式主要为沟槽作用.与G-四链体DNA作用后, DTrpHA及其配位聚合物中的色胺基团均具有较大的减色效应(> 45%)和峰位红移(≥ 4 nm),说明色胺基团与G-四链体采用外部堆积作用方式结合;而竹红菌素基团的减色效应相对较小且无明显峰位变化,表明竹红菌素基团采用非特异性作用方式与G-四链体的环区碱基或糖-磷酸骨架结合. G-四链体22AG的构象主要为分子内反平行结构,加入DTrpHA及其配位聚合物对G-四链体22AG的构象影响较小. Y3+-DTrpHA比DTrpHA和La3+-DTrpHA与G-四链体具有更强的相互作用. Y3+-DTrpHA使得CT DNA的熔解温度(Tm)上升了仅1.9 ℃,而使G-四链体的熔解温度上升了13.1 ℃.荧光嵌插剂置换实验 (FID)结果表明, Y3+-DTrpHA对G-四链体具有良好亲和性,具有较小的G4DC50值(使噻唑橙/G-四链体体系荧光下降50%所需配体或配合物的浓度)和较高的G-四链体选择性.  相似文献   

7.
基于结晶紫(CV)与G-四链体的特异性结合以及结晶紫和端粒DNA(G-DNA)、G-四链体作用后荧光强度的差异,以天然抗肿瘤中药槲皮素为研究对象,建立了一种简单、快速、无标记筛选G-四链体配体的方法。研究了槲皮素与G-DNA的相互作用,并考察了G-DNA在K+存在下形成G-四链体后与槲皮素的作用情况。该方法已用于筛选G-四链体的小分子配体。  相似文献   

8.
设计合成了一种新型邻菲罗啉衍生物,用IR,<'1>H-NMR,<'13>C-NMR和质谱进行了结构表征.在包含100mM NaCl的Tris-HCl(pH 7.4)缓冲溶液中,利用荧光共振能量转移熔点(FRET-melting)分析以及紫外可见光谱研究了此化合物对人端粒G-四链体DNA(AG<,3>T<,2>AG<,3...  相似文献   

9.
人体端粒由富含鸟嘌呤(G)的DNA重复序列组成,该序列在一定条件下可以形成G-四链体DNA结构。小分子化合物诱导该结构的形成并使之稳定,可以抑制端粒酶活性而达到抗肿瘤的目的。因此,G-四链体DNA稳定剂的设计和筛选是近年来生物无机化学的重要前沿研究领域之一。在金属配合物中,钌配合物由于具有丰富的光化学、光物理特性以及生物活性,其作为G-四链体DNA稳定剂引起人们的高度关注。本文以近年一些代表性的研究工作为例,对钌配合物与G-四链体DNA相互作用方面的研究进展进行了综述。  相似文献   

10.
合成了三种2, 6-双(N-乙基苯并咪唑)吡啶炔基铂(Ⅱ)配合物(2-4),其中配合物2的炔基配体为抗癌药物埃罗替尼.利用紫外-可见(UV-Vis)吸收光谱,圆二色(CD)光谱,荧光共振能量转移(FRET)等方法研究了铂(Ⅱ)配合物与人体端粒(Hetelo)和c-myc原癌基因(c-myc)G-四链体的相互作用.实验结果表明,所合成的铂配合物与G-四链体具有较强的相互作用(Ka > 106 L·mol-1),在无碱金属离子存在条件下能诱导G-四链体的形成.含苯乙炔基团的配合物2、3能使c-myc G-四链体的熔解温度上升24 ℃以上,而含丙炔基团的铂配合物4仅使c-mycG-四链体的熔解温度升高9.0 ℃,表明炔基结构对铂(Ⅱ)配合物与G-四连体的作用有较大影响.配合物2对人肺癌细胞A549的细胞毒性明显高于埃罗替尼及其他两种配合物3、4.  相似文献   

11.
A series of 2-phenyl-benzopyranopyrimidine (PBPP) derivatives with alkylamino side chains were synthesized and found to be a new type of highly selective ligand to bind with telomeric G-quadruplex DNA, and their biological properties were reported for the first time. Their interactions with telomeric G-quadruplex DNA were studied with FRET melting, surface plasmon resonance, CD spectroscopy, and molecular modeling. Our results showed that the disubstituted PBPP derivatives could strongly bind to and effectively stabilize the telomeric G-quadruplex structure, and had significant selectivity for G-quadruplex over duplex DNA. In comparison, the mono substituted derivatives had much less effect on the G-quadruplex, suggesting that the disubstitution of PBPP is essential for its interaction with the G-quadruplex. Furthermore, telomerase inhibition of the PBPP derivatives and their cellular effects were studied, and compound 11b was found to be the most promising compound as a telomerase inhibitor and telomeric G-quadruplex binding ligand for further development for cancer treatment.  相似文献   

12.
Qiao Y  Deng J  Jin Y  Chen G  Wang L 《The Analyst》2012,137(7):1663-1668
The G-rich overhang of human telomere tends to form a G-quadruplex structure, and G-quadruplex formation can effectively inhibit telomerase activity in most cancer cells. Therefore, it is important to identify the formation and properties of the G-quadruplex, with the particular aim of selecting G-quadruplex-binding ligands that could potentially lead to the development of anticancer therapeutic agents. With this goal in mind, we report a fluorescence resonance energy transfer (FRET) assay system for the identification of G-quadruplex ligands using DNA-functionalized gold nanoparticles (DNA-GNPs) as the fluorescence quencher and a carboxyfluorescein (FAM)-tagged human telomeric sequence (F-GDNA) as the recognition probe. A thiolated complementary strand of human telomeric DNA (cDNA), which first adheres to the surface of the GNPs and then hybridizes with F-GDNA, results in the fluorescence quenching of F-GDNA by the GNPs. However, fluorescence is restored when single-stranded F-GDNA folds into a G-quadruplex structure upon the binding of quadruplex ligands, leading to the release of F-GDNA from the surface of the GNPs. Combined data from fluorescence measurements and CD spectroscopy indicated that ligands selected by this FRET method could induce GDNA to form a G-quadruplex. Therefore, this FRET G-quadruplex assay is a simple and effective approach to identify quadruplex-binding ligands, and, as such, it promises to provide a solid foundation for the development of novel anticancer therapeutic agents.  相似文献   

13.
G-quadruplex structures are a new class of attractive targets for DNA-interactive anticancer agents. The primary building block of this structure is the G-quartet, which is composed of four coplanar guanines and serves as the major binding site for small molecules. NMR studies and molecular dynamics simulations have suggested that the planarity of G-quartet surface has been highly dynamic in solution. To better investigate how the planarity of unfused aromatic ligand impacts on its quadruplex binding properties, a variety of planarity controllable isaindigotone derivatives were designed and synthesized. The interaction of G-quadruplex DNA with these designed ligands was systematically explored using a series of biophysical studies. The FRET-melting, SPR, and CD spectroscopy results showed that reducing the planarity of their unfused aromatic core resulted in their decreased binding affinity and stabilization ability for G-quadruplex. NMR studies also suggested that these compounds could stack on the G-quartet surface. Such results are in parallel with subsequent molecular modeling studies. A detailed binding energy analysis indicated that van der Waals energy (ΔE(vdw)) and entropy (TΔS) are responsible for their decreased quadruplex binding and stabilization effect. All these results provided insight information about how quadruplex recognition could be controlled by adjusting the planarity of ligands, which shed light on further development of unfused aromatic molecules as optimal G-quadruplex binding ligands.  相似文献   

14.
The human telomeric sequence d[T(2)AG(3)](4) has been demonstrated to form different types of G-quadruplex structures, depending upon the incubation conditions. For example, in sodium (Na(+)), a basket-type G-quadruplex structure is formed. In this investigation, using circular dichroism (CD), biosensor-surface plasmon resonance (SPR), and a polymerase stop assay, we have examined how the addition of different G-quadruplex-binding ligands affects the conformation of the telomeric G-quadruplex found in solution. The results show that while telomestatin binds preferentially to the basket-type G-quadruplex structure with a 2:1 stoichiometry, 5,10,15,20-[tetra-(N-methyl-3-pyridyl)]-26-28-diselena sapphyrin chloride (Se2SAP) binds to a different form with a 1:1 stoichiometry in potassium (K(+)). CD studies suggest that Se2SAP binds to a hybrid G-quadruplex that has strong parallel and antiparallel characteristics, suggestive of a structure containing both propeller and lateral, or edgewise, loops. Telomestatin is unique in that it can induce the formation of the basket-type G-quadruplex from a random coil human telomeric oligonucleotide, even in the absence of added monovalent cations such as K(+) or Na(+). In contrast, in the presence of K(+), Se2SAP was found to convert the preformed basket G-quadruplex to the hybrid structure. The significance of these results is that the presence of different ligands can determine the type of telomeric G-quadruplex structures formed in solution. Thus, the biochemical and biological consequences of binding of ligands to G-quadruplex structures found in telomeres and promoter regions of certain important oncogenes go beyond mere stabilization of these structures.  相似文献   

15.
Various biologically relevant G-quadruplex DNA structures offer a platform for therapeutic intervention for altering the gene expression or by halting the function of proteins associated with telomeres. One of the prominent strategies to explore the therapeutic potential of quadruplex DNA structures is by stabilizing them with small molecule ligands. Here we report the synthesis of bisquinolinium and bispyridinium derivatives of 1,8-naphthyridine and their interaction with human telomeric DNA and promoter G-quadruplex forming DNAs. The interactions of ligands with quadruplex forming DNAs were studied by various biophysical, biochemical, and computational methods. Results indicated that bisquinolinium ligands bind tightly and selectively to quadruplex DNAs at low ligand concentration (~0.2-0.4 μM). Furthermore, thermal melting studies revealed that ligands imparted higher stabilization for quadruplex DNA (an increase in the T(m) of up to 21 °C for human telomeric G-quadruplex DNA and >25 °C for promoter G-quadruplex DNAs) than duplex DNA (ΔT(m) ≤ 1.6 °C). Molecular dynamics simulations revealed that the end-stacking binding mode was favored for ligands with low binding free energy. Taken together, the results indicate that the naphthyridine-based ligands with quinolinium and pyridinium side chains form a promising class of quadruplex DNA stabilizing agents having high selectivity for quadruplex DNA structures over duplex DNA structures.  相似文献   

16.
A class of 9(10H)-acridone derivatives with terminal ammonium substituents at C2 (and C7) position(s) on the acridone ring were successfully synthesized. The relative affinities of the acridone compounds to G-quadruplex DNA have been investigated and the results showed that these compounds had a binding specificity for G-quadruplex over duplex sequences. The acridones with two terminal ammonium substituents had much more effects on the human telomeric G-quadruplex DNA than the corresponding acridone derivatives with one terminal ammonium substituent, and more positive charges introduced to the side chains can improve the formation and stabilization of the G-quadruplex.  相似文献   

17.
A facile imide coupling strategy for the one-step preparation of G-quadruplex ligands with varied core chemistries is described. The G-quadruplex stabilization of a library of nine compounds was examined using FRET melting experiments, and CD, UV-Vis, fluorescence and NMR titrations, identifying several compounds that were capable of stabilizing G-quadruplex DNA with interesting selectivity profiles. The best G4 ligand was identified as compound 3 , which was based on a perylene scaffold and exhibited 40-fold selectivity for a telomeric G-quadruplex over duplex DNA. Surprisingly, a tetra-substituted flexible core, compound 11 , also exhibited selective stabilization of G4 DNA over duplex DNA. The anticancer and antiparasitic activity of the library was also examined, with the lead compound 3 exhibiting nanomolar inhibition of Trypanosoma brucei with 78-fold selectivity over MRC5 cells. The cellular localization of this compound was also studied via fluorescence microscopy. We found that uptake was time dependant, with localization outside the nucleus and kinetoplast that could be due to strong fluorescence quenching in the presence of small amounts of DNA.  相似文献   

18.
The interaction between 13‐phenylalkyl and 13‐diphenylalkyl berberine derivatives ( NAX ) and human telomeric DNA G4 structures has been investigated by both spectroscopic and crystallographic methods. NAX042 and NAX053 are the best compounds improving the performance of the natural precursor berberine. This finding is in agreement with the X‐ray diffraction result for the NAX053 ‐Tel12 adduct, showing the ligand which interacts via π‐stacking, sandwiched at the interface of two symmetry‐related quadruplex units, with its benzhydryl group contributing to the overall stability of the adduct by means of additional π‐stacking interactions with the DNA residues. The berberine derivatives were also investigated for their cytotoxic activity towards a panel of human cancer cell lines. Compounds NAX042 and NAX053 affect the viability of cancer cell lines in a dose‐dependent manner.  相似文献   

19.
Human telomeric G-quadruplexes have raised broad interest not just due to their involvement in the regulation of gene expressions and telomerase activities but also because of their application in nanoarchitectures. Herein, three azobenzene derivatives 1-3 were synthesized with different substituent groups and their photo-isomerization properties were investigated by UV/Vis spectroscopy. Then circular dichroism spectroscopy (CD), fluorescence experiments and native-gel electrophoresis were performed to evaluate their capabilities of conformational photo-regulation both in the absence and presence of metal ions. The results suggested that the compounds synthesized can successfully regulate the conformation of human telomeric G-quadruplex DNA in K(+) conditions to some extent. This work will initiate the possibility for the design and intriguing application of light-induced switching to photoregulate the conformation of G-quadruplex DNA under physiological conditions, providing a possible pathway to control G-quadruplex conformation in biological applications and also expanding the potential use of G-quadruplexes in nanomachines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号