首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Immobilization of polyclonal antibodies was studied on native screen-printed graphite electrodes (SPEs) and variously modified electrodes. SPEs coated with didodecylammonium bromide (DDAB, a synthetic membranelike substance) films with gold nanoparticles gave the maximum electrochemical response. DDAB and gold nanoparticle films strongly changed the surface morphology, and the electrochemical signal became more intense and stable. This immobilization method increased the concentration of immobilized antibodies while their activity was retained. The detection limit of the enzymatic label (horseradish peroxidase) was 0.02 ng/L of sample.  相似文献   

2.
A flow-injection electrochemical immunoassay system based on a disposable immunosensor for the determination of interleukin-6 (IL-6) was proposed. The immunosensor was prepared by entrapping horseradish peroxidase (HRP)-labeled IL-6 antibody into gold nanoparticles-modified composite membrane at a screen-printed graphite electrode. With a non-competitive immunoassay format, the immunosensor was inserted in the flow system with an injection of sample, and the injected sample containing IL-6 antigen was produced transparent immunoaffinity reaction with the immobilized HRP-labeled IL-6 antibody. The formed antigen–antibody complex inhibited partly the active center of HRP, and decreased the immobilized HRP to H2O2 reduction. The performance and factors influencing the performance of the immunosensor were investigated. Under optimal conditions, the current change obtained from the labeled HRP relative to thionine–H2O2 system was proportional to the IL-6 concentration in the range of 5–100 ng L−1 with a detection limit of 1.0 ng L−1 (at 3δ). The flow-injection immunoassay system could automatically control the incubation, washing and measurement steps with acceptable reproducibility and good stability. Moreover, the proposed immunosensors were used to analyze IL-6 in human serum specimens. Analytical results of clinical samples show the developed immunoassay has a promising alternative approach for detecting IL-6 in the clinical diagnosis.  相似文献   

3.
Biosensors for environmental pollutants and food contaminants   总被引:4,自引:0,他引:4  
This review article provides an overview of the most recent literature on biosensors for environmental pollutants and food contaminants. Due to the large number of publications, only papers published between 2000 and January 2003 were considered. Also, while not all of the published literature could be reviewed here, over 200 references are cited to provide a good overview of research undertaken in the last two years. Older publications are covered by a number of earlier review articles. This article provides an introduction into the field including specific consideration of the application areas, describes the typical biosensor assay format used, and is subsequently structured according to the biorecognition elements used (i.e., nucleic acids, enzymes, whole cells, tissue and whole organisms, antibodies and receptors, and biomimetic materials). In addition, a section on microbiosensing systems is provided. Since only very few microbiosensors with applications in environmental and food systems have been published, enabling technology is also covered in this article.Abbreviations BOD biological oxygen demand - cfu colony forming units - DNP dinitrophenol - GFP green fluorescent protein - NASBA nucleic acid sequence-based amplification - PCR polymerase chain reaction - ppt parts per trillion - QCM quartz crystal microbalance - SPR surface plasmon resonance  相似文献   

4.
Simple and sensitive DNA sensors have been developed on a base on graphite screen-printed electrodes modified with DNA and enzymes. Cholinesterase and peroxidase immobilized by treatment with glutaraldehyde were used for the detection of human DNA antibodies of systemic lupus erythematosus and bronchial asthma patients. The amperometric signal was measured at +680 mV versus Ag/AgCl for DNA-cholinesterase sensor and −150 mV for DNA-peroxidase sensor 5 min after the injection of acethylthiocholine and hydroquinone, respectively. The addition of serum samples results in the sharp decrease of the signal due to the formation of DNA-antibody adducts followed by the suppression of the access of substrate to the enzyme active site. Sulfonamide medicines suppress the DNA-antibody interaction due to the competitive binding along DNA minor grooves. DNA sensor labeled with peroxidase showed the linear calibration range of 5×10−9 to 7×10−5 mol l−1 of sulfamethoxazole and of 5×10−8 to 1×10−4 mol l−1 of sulfathiazole.  相似文献   

5.
This review summarizes scientific research activity on biosensors, especially screen-printed, electrode-based biosensors. The basic configurations of biosensors based on screen-printing technology are discussed and different procedures for immobilization of the biorecognition component are reviewed. Theoretical aspects are exemplified by practical environmental and food-analysis applications of screen-printed, electrode-based biosensors.  相似文献   

6.
Since the first biosensor was introduced in 1962 by Clark and Lyons, there has been increasing demand for such analytical devices in diagnostic applications. Research initially focussed mainly on detector principles and recognition elements, whereas the packaging of the biosensors and the microfluidic integration has been discussed only more recently. However, to obtain a user-friendly and well-performing analytical device, those components have to be considered all together. This review outlines the requirements and the solutions suggested for the integration of suitable biosensors in packaging and the integration of those encapsulated biosensors into a microfluidic surrounding resulting in a complete and efficient analytical device for diagnostic applications. The components required for a complete biosensor instrument are described and the latest developments which meet the requirements for diagnostic applications, such as single-use components and arrays for multiparameter detection, are discussed. The current state and the future of biosensors in the field of clinical diagnostics are outlined, particularly on the basis of label-free assay formats and the detection of prominent biomarkers for cancer and autoimmune disorders.  相似文献   

7.
Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPCTTFE response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0 ± 0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPCPtEs) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5 ± 7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPCTTFE and a GOx/SPCPtE connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples.  相似文献   

8.
Cholinesterase sensors based on screen-printed electrodes modified with polyaniline, 7,7,8,8-tetracyanoquinodimethane (TCNQ), and Prussian blue have been developed and tested for detection of anticholinesterase pesticides in aqueous solution and in spiked grape juice. The influence of enzyme source and detection mode on biosensor performance was explored. It was shown that modification of the electrodes results in significant improvement of their analytical characteristics for pesticide determination. Thus, the slopes of the calibration curves obtained with modified electrodes were increased twofold and the detection limits of the pesticides were reduced by factors of 1.6 to 1.8 in comparison with the use of unmodified transducers. The biosensors developed make it possible to detect down to 2×10–8 mol L–1 chloropyrifos-methyl, 5×10–8 mol L–1 coumaphos, and 8×10–9 mol L–1 carbofuran in aqueous solution and grape juice. The optimal conditions for grape juice pretreatment were determined to diminish interference from the sample matrix.Abbreviations ChE Cholinesterase - TCNQ 7,7,8,8-Tetracyanoquinodimethane - ChO Choline oxidase - AChE Acetylcholinesterase - BChE Butyrylcholinesterase - BSA Bovine serum albumin - 2-PAM 2-Pyridine aldoxime methiodide  相似文献   

9.
Gold nanowires were synthesized within polycarbonate membranes according to an electroless deposition method, obtaining nanoelectrode ensembles (NEEs) with special electrochemical features. NEEs were coupled with home-produced carbon graphite screen printed electrodes and the electrochemical properties of the original nanoelectrode ensemble on screen printed substrate (NEE/SPS) assembly has been tested for sensors application. Glucose oxidase has been used as model enzyme in order to verify the feasibility of disposable gold NEE/SPS biosensors. Finally, different immobilisation and electrochemical deposition techniques based on either self assembled monolayers of cysteamine (CYS) or amino-propyl-triethoxysilane (APTES) and conductive polyaniline (PANI) molecular wires were used. Spatial patterning of the enzyme on the polycarbonate surface and of PANI wires on gold nanoelectrodes was obtained. Possible direct electron transfer between the enzyme and the PANI modified gold nanoelectrodes has been evaluated.  相似文献   

10.
A new electrochemical method has been described and characterized for the determination of cocaine using screen-printed biosensors. The enzyme cytochrome P450 was covalently attached to screen-printed carbon electrodes. Experimental design methodology has been performed to optimize the pH and the applied potential, both variables that have an influence on the chronoamperometric determination of the drug. This method showed a reproducibility of 3.56% (n = 4) related to the slopes of the calibration curves performed in the range from 19 up to 166 nM. It has been probed the used of this kind of biosensors in the determination of cocaine in street samples, with an average capability of detection of 23.05 ± 3.53 nM (n = 3, α = β = 0.05).  相似文献   

11.
Screen-printed electrodes (SPEs), which are used as economical electrochemical substrates, have gone through significant improvements over the past few decades with respect to both their format and their printing materials. Because of their advantageous material properties, such as disposability, simplicity, and rapid responses, SPEs have been successfully utilised for the rapid in situ analysis of environmental pollutants. This critical review describes the basic fabrication principles, the configuration designs of SPEs and the hybrid analytical techniques based on SPEs. We mainly overview the electrochemical applications of SPEs in environmental analysis over the past 3 years, including the determination of organic compounds, heavy metals and gas pollutants.  相似文献   

12.
Amperometric enzyme electrode for glucose is described based on the incorporation of glucose oxidase (GOD) into graphite paste modified with tetracyanoquinodimethane (TCNQ). The incorporated enzyme exhibits high activity and long-term stability over the earlier TCNQ-based glucose sensor (1). The sensor provides a linear response to glucose over a wide concentration range. The response time of the sensor is 15-50 sec, and the detection limit is 0.5 mM. Stable response to the substrate was obtained during a period of 35 d. Application of the sensor in the plasma analysis is reported.  相似文献   

13.
Potential cycling in the range from -0.2 to +1.2 V is used for the electrodeposition of hydrous iridium oxide films onto a screen-printed electrode from a saturated solution of alkaline iridium(III) solution. The iridium oxide redox couple shows a stable and obvious reversible redox, with the formal potential being pH dependent in the range 1-14. The properties, stability and electrochemical properties of iridium oxide films were investigated by cyclic voltammetry. A modified electrode showed excellent catalytic activity toward the oxidation of neurotransmitters (catecholamines) over a wide pH range (2-8). The electrocatalytic behavior is further exploited as a sensitive detection scheme for adrenaline and dopamine by hydrodynamic amperometry. Under the optimized conditions, the calibration curves are linear in the concentration range 0.1-70 and 0.1-15 microM for dopamine and adrenaline determination, respectively. The detection limit and sensitivity are 30 nM and 30 nA/microM for adrenaline and 15 nM and 80 nA/microM for dopamine. Finally, the analytical performance of the modified electrode was demonstrated for the elimination of interference by uric acid in catecholamines determination when present in a 1000-fold concentration excess.  相似文献   

14.
Screen-printed electrodes coated with the nafion layer have been investigated for cholinesterase biosensor design. The butyrylcholinesterase (ChE) from horse serum was immobilised onto the nafion layer by cross-linking with glutaraldehyde vapours. The biosensors obtained showed better long-term stability and lower working potential in comparison to those obtained with no nafion coating. The sensitivity of a biosensor toward organophosphate pesticides is not affected by the nafion coating. The detection limits were found to be 3.5x10(-7) M for trichlorfon and 1.5x10(-7) M for coumaphos.  相似文献   

15.
This paper reports a new method for the immobilisation of acetylcholine esterase (AChE) on the surface of screen-printed electrodes (SPEs) based on the affinity between the glycoprotein enzyme and concavalin A (Con A). The surface of the working electrode has been modified with a Nafion layer that contains graphite, the mediator 7,7,8,8-tetracyanoquinodimethane (TCNQ) and heptylamine. The enzyme-free SPEs were characterised by cyclic voltammetry in buffer solutions and amperometry using cysteamine as analyte. The AChE immobilisation process leads to the sandwich structure: electrode-carbohydrate-Con A-enzyme. The first step of the immobilisation is the covalent activation of an amino group bound in a Nafion layer. The following steps are based on the affinity. The non-specific adsorption has been totally eliminated using BSA solutions at two different pHs. Various amounts of enzyme, from 0.1 to more than 2 mIU AChE, have been loaded on the electrode surface. The method offers the advantage of a free diffusion, which allows obtaining a response time of less than 2 min. An operational stability of more than 10 measurements was registered, while the active surface of the electrode was successfully reloaded for three consecutive times without any important change of the analytical performances.  相似文献   

16.
The electrodeposition of DNA-gold nanoparticles previously developed in our group has been used as starting point for the electrodeposition of proteins attached to gold nanoparticles. We have performed a proof of principle by developing a methodology based on the electrodeposition of proteins bound to gold nanoparticles on screen-printed gold microelectrodes using, in a first approach, horseradish peroxide-conjugated gold nanoparticles (gold-HRP). The electrodeposition was achieved at a current positive potential of 800 mV vs. Ag/AgCl and the functionality of the electrodeposited HRP-particles was tested by electrochemical reduction of H(2)O(2). Furthermore, we used this proof of concept in an aptasensor application to detect Leishmania infantum KMP-11. Hence, we have demonstrated not only the functionality of the electrodeposition of proteins bound to gold nanoparticles, but also the utility of the method with the aim of developing a real biosensor containing multiple enzymes or proteins in a multimodular device.  相似文献   

17.
Two types of mass-produced, screen-printed carbon ink-based macrodisc electrodes suitable for routine sensing applications have been fabricated. Microscopic examination of these carbon ink electrode surfaces reveals that their surfaces are both rough and highly heterogeneous, consisting of random arrays of carbon particles of different sizes, as well as binder. Consequently, they may suffer from a lack of reproducibility in their performance because of variable resistance, capacitance or electroactive area. Use of a Fourier transform AC voltammetric protocol involving application of periodic waveform obtained from summation of five sine waves of variable frequency enabled resistance and capacitance, as well as DC and AC Faradaic currents associated with the model processes or (where FcMeOH is ferrocene methanol) to be assessed from a single experiment. Such data, which may be obtained rapidly via this approach, are highly suitable for quality control assessment.  相似文献   

18.
Three strategies have been compared to produce screen-printed amperometric detectors for NADH: mixing Meldola Blue (MB) in the screen-printing ink, incorporation of MB-Reinecke salt (MBRS) in the graphite ink and electrodeposition of films of MB-derived polymer (poly (MB)) on electrode surface. Following modification of graphite electrodes the mediators displayed values of the formal potential E°′ from −0.129 to −0.160 V vs. Ag/AgCl and pKas of 5.09-6.02. A second redox couple with E°′=−0.450 V vs. Ag/AgCl was observed in cyclic voltammetry experiments with poly (MB) sensors or with old electrodes obtained according to the other two strategies. Electropolymerisation of MB allowed to achieve the best operational stability and best detection limit, 2×10−6 M, for amperometric detection of NADH, while the most extended linear range, 1×10−5-7.5×10−4 M, corresponds to sensors with MBRS. MB and MBRS electrodes were compared with a similar NADH detector produced by Gwent Electronic Materials, England. Several characteristics of the modified-electrodes induced by the fabrication by screen-printing were also highlighted.  相似文献   

19.
Screen-printed carbon electrodes have been modified with tetrathiafulvalene and sulfite oxidase enzyme for the sensitive and selective detection of sulfite. Amperometric experimental conditions were optimized taking into account the importance of quantifying sulfite in wine samples and the inherent complexity of these samples, particularly red wine. The biosensor responds to sulfite giving a cathodic current (at +200 mV vs screen-printed Ag/AgCl electrode and pH 6) in a wide concentration range, with a capability of detection of 6 μM (α = β = 0.05) at 60 °C. The method has been applied to the determination of sulfite in white and red samples, with averages recoveries of 101.5% to 101.8%, respectively.  相似文献   

20.
A novel sensor based on a screen-printed electrode (SPE) modified with a stable dispersion of commercially available carbon black (CB) N220 was developed. This probe showed significantly enhanced electrochemical activity relative to a bare SPE when tested with ferricyanide, epinephrine, norepinephrine, benzoquinone and NADH. When challenged in amperometric batch mode with NADH, the response was stable and revealed a linear dependence up to 2·10?4 mol L?1 with a detection limit of 3·10?7 mol L?1. The analytical performance, coupled with the low cost of the CB nanomaterial, suggests that this sensor holds promise for electrochemical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号