首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
本文以高分子聚合物(F127)为模板, 以强疏水的1,3,5-三甲基苯为有机添加物, 通过旋转覆膜的方法制备出具有多级复合孔的二氧化钛晶体薄膜, 并采用TEM和SEM对样品结构进行了分析, 同时考察了这种薄膜对DNA分子的吸附性能.  相似文献   

3.
以聚甲基丙烯酸甲酯(PMMA)为硬模板,三嵌段共聚物F127、十六烷基三甲基溴化铵(CTAB)或聚乙二醇(PEG)为软模板剂(表面活性剂),柠檬酸为络合剂,硝酸铈为金属前驱体,采用双模板法成功地合成出具有介孔孔壁的三维有序大孔(3DOM)结构的立方相CeO2样品CeO2-F127,CeO2-CTAB和CeO2-PEG,...  相似文献   

4.
以非离子型三嵌段共聚物EO106PO70EO106 (F127)/正丁醇/氯铂酸水溶液构建的溶致液晶层状相为模板, 电化学沉积制备铂纳米材料. 透射电镜和扫描电镜显示, 产物为具有高长径比的纳米线形成的束状结构, 能量弥散谱与电极电势分析证实产物为铂单质, 而循环伏安测量表明产物的比表面积约为53 m2•g−1. 对影响产物形貌的因素和产物生成的可能机理进行了分析.  相似文献   

5.
苯基桥键型介孔材料的制备与表征   总被引:1,自引:0,他引:1  
以1,4-二(三乙氧基硅基)-苯为硅源,聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物为模板剂,十六烷基三甲基溴化铵为共模板剂,乙醇为共溶剂,在酸性条件下合成了球形的苯基桥键型有序介孔材料。X射线衍射和透射电镜表征结果表明,该材料具有有序的二维六方相介观结构;傅立叶红外变换、13C和29S i固体核磁共振表征证实硅胶骨架中成功引入了苯基桥键,且在合成和模板移除过程中未发生S i—C键断裂;元素分析表明材料含碳量为34%~39%;热重分析说明材料稳定温度可达300℃;氮气吸附脱附揭示了材料有较高的比表面积(500~600 m2/g)和窄的孔径分布(3.21~3.95 nm)。将该苯基材料不经化学改性直接用作反相高效液相色谱固定相,并与商品键合硅胶苯基色谱柱比较,发现桥键型苯基材料对芳香类化合物具有很好的分离选择性,残留硅羟基明显减少,作为一种新的液相色谱填料具有很好的应用前景。  相似文献   

6.
Self-diffusion constants of amphiphilic molecules in D(2)O solutions of mixed poly(oxyethylene)-polydimethylsiloxane diblock copolymer (POE-PDMS, Si(m)C(3)EO(n)) and poly(oxyethylene) dodecyl ether (C(12)EO(n)) were measured by pulsed-field-gradient NMR method. In the D(2)O/Si(25)C(3)EO(51.6)/C(12)EO(8) or D(2)O/Si(52)C(3)EO(51.6)/C(12)EO(8) systems, small and large micelles coexist in a wide range of Si(m)C(3)EO(51.6) fraction in total amphiphiles, whereas such a coexisting phenomenon does not take place in the D(2)O/Si(5.8)C(3)EO(51.6)/C(12)EO(8) system. The coexisting phenomenon also takes place in the D(2)O/Si(25)C(3)EO(51.6)/C(12)EO(5) system although the range of mixing fraction is limited. By obtaining each contribution of surfactant and copolymer molecules to the attenuation decay of the echo signal from the proton of the poly(oxyethylene) chain, we could evaluate the composition of the mixed micelles in the D(2)O/Si(25)C(3)EO(51.6)/C(12)EO(8) system. The copolymer content in the mixed micelle increases proportionally to the copolymer mole fraction in the aqueous solution. From the series of self-diffusion measurements, we can conclude that the miscibility of Si(m)C(3)EO(n) and C(12)EO(n) in aqueous micelles becomes poor and the coexisting phenomenon takes place when the PDMS chain becomes much longer than the dodecyl chain of C(12)EO(n) or the POE chain of C(12)EO(n) becomes long. Furthermore it is also revealed that very few silicone copolymer molecules can be incorporated in small surfactant micelles.  相似文献   

7.
Ultra-large-pore FDU-12 (ULP-FDU-12) silica with face-centered cubic structure (Fm3m type) of spherical mesopores was synthesized using Pluronic F127 triblock copolymer (EO(106)PO(70)EO(106)) and ethylbenzene as a new micelle expander at initial temperature of 14 °C. Ethylbenzene was identified on the basis of its reported extent of solubilization in poly(ethylene oxide)-poly(propylene oxide)-type surfactant micelles, which was similar to that of xylene, the latter having been shown earlier to afford ULP-FDU-12. The unit-cell parameter of as-synthesized ULP-FDU-12 was 55 nm, which is similar to the highest value reported when xylenes (mixture of isomers) were used and larger than that achieved with trimethylbenzene. The unit-cell parameter of calcined ULP-FDU-12 reached 52 nm. For the obtained materials, the nominal pore cage diameter calculated from nitrogen adsorption reached 32 nm, whereas the actual pore cage diameter calculated using the geometrical relation was 36 nm. The pore entrance size was below 5 nm before the acid treatment, but was greatly enlarged as a result of the treatment. The sample prepared without hydrothermal treatment was converted to ordered closed-pore silica at as low as 400-450 °C. Our study confirms the ability to select micelle expanders on the basis of data on solubilization of compounds in micelle solutions.  相似文献   

8.
Mesoporous SBA-16 and SBA-15 were studied in order to control their possible morphologies. SBA-16 is synthesized using a silicon source (tetraethoxysilane, TEOS) and a ternary system consisting of surfactant F127 (EO106PO70EO106), water, and butanol. The same ternary system, with higher butanol concentration, is used to form SBA-15 material as well. An increase of the TEOS concentration results in a morphology shift of SBA-16 from micron-sized spheres, over randomly shaped aggregated particles, to macrospheres with a size of 15 mm. An identical increase in TEOS concentration also results in the formation of SBA-15 macrospheres, which can be controlled in size. Micron-sized spheres of SBA-15 were formed using a quaternary system of surfactant P123 (EO20PO70EO20), cetyltrimethylammonium bromide (CTAB), ethanol, and water. All mesoporous silica materials were characterized using SEM, XRD, and N2 sorption techniques.  相似文献   

9.
Highly ordered mesoporous carbon with cubic Im3m symmetry has been synthesized successfully via a direct carbonization of self-assembled F108 (EO(132)PO(50)EO(132)) and resorcinol-formaldehyde (RF) composites obtained in a basic medium of nonaqueous solution.  相似文献   

10.
In this paper, atomic force microscopy (AFM) has been used to investigate the morphology of monolayers of the amphiphilic rod-coil diblock molecule (EO7OPV) containing oligo(phenylene vinylene) dimer (OPV) and poly(ethylene oxide) (PEO) as well as the morphology of mixed monolayers of EO7OPV and palmitic acid (PA) deposited onto mica by the Langmuir-Blodgett technique. At surface pressures higher than 3 mN/m, EO7OPV forms regular-shaped aggregates with a monomolecular layer structure, where the hydrophilic PEO blocks are adsorbed onto the mica substrate and the hydrophobic OPV blocks form an ordered crystalline OPV layer on the top of the PEO layer through the strong pi-pi stacking interaction. In the mixed LB monolayers of EO7OPV and PA, the phase separation occurs. At a certain mixed ratio, EO7OPV molecules form rodlike domains with regular shape and uniform size at surface pressures higher than 3 mN/m. With the increase of the molar fraction of PA, the rodlike domains consisting of EO7OPV are elongated. The length of the rodlike domains can be tuned easily in a large range by altering the molar ratio of EO7OPV and PA. In addition, the rodlike domains are oriented to specific directions, corresponding to the directions of the potassium ion array on the mica surface having 6-fold symmetry. We demonstrate the possible formation mechanism and the elongation origin of rodlike domains in mixed LB monolayers and propose the two-step formation process of oriented rodlike domains deposited onto the mica substrate.  相似文献   

11.
In the synthesis of InPO4 crystals, using F127 [(EO)106(PO)70(EO)106] as a structure‐directing template, a morphology tunable progress was observed during the crystal evolution. By verifying the initial pH from 1.0 to 12.0, the morphology is evolved from single crystal, through sub‐micro crystallites, and finally to crystalline nanoparticles. The most influential factors in the morphology evolution are the initial pH level, the participation of surfactant‐template F127, and the change in pH during the reaction.  相似文献   

12.
Homogeneous tertiary N,N-dimethyl-N-β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylamines, LM(EO)nAT, are niche intermediates in the synthesis of homogeneous N-alkyl (C1–C18)-N,N-dimethyl-N-β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylammonium chlorides (unitary degree of oligomerization of ethylene oxide in the polyoxyethylene chain). This paper synthetically presents the dependence of the reductive methylation yields of homogeneous primary β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylamines, LM(EO)nAP, on the reaction time (10–90 min), the temperature (70 °C), the molar ratio formic aldehyde /LM(EO)nAP (1.1/1–2.5/1), the molar ratio HCOOH/LM(EO)nAP (5/1), the degree of oligomerization of ethylene oxide in the homogeneous polyoxyethylene chain in the 3,6,9,12,18 series, and the structure of the phase-transfer catalysts. The steric effects of hydrophobic groups CH3 and C18H37 grafted onto the ammonium function, and the micellar phenomena in the vicinity of their critical micellar concentration, directly proportional to the homogeneous degree of oligomerization, were highlighted. In all cases, a steady increase in reductive methylation yields was observed, with even quantitative values obtained. The high purity of the homologous series LM(EO)nAT will allow their personalization as reference structures for the study of the evolution of basic colloidal characteristics useful in forecasting technological applications. LM(EO)nAP were obtained either by direct amidoethylation (nucleophilic addition under basic catalysis of homogeneous lauryl/myristyl 7/3 polyethoxylated n = 3, 6, 9, 12, 18 alcohols, LM(EO)nOH, to acrylamide monomer) or by cyanoethylation of LM(EO)nOH under basic catalysis at 25–50 °C, in the presence of Fe2+ cations as oligomerization/polymerization inhibitor, followed by partial acid hydrolysis of homogeneous β-alkyl (C12H25/C14H29) 7/3 polyethyleneoxy n = 3, 6, 9, 12, 18 propionitriles, LM(EO)nPN, to β-alkyl (C12H25/C14H29) 7/3 polyethyleneoxy n = 3, 6, 9, 12, 18 propionamides, LM(EO)nPD, which led to LM(EO)nAP by Hoffmann degradation. Homogeneous higher tertiary polyetheramines LM(EO)nAT were structurally characterized.  相似文献   

13.
The mixture of two surfactants (C12EO10-CTAB and C12EO10-SDS) forms lyotropic liquid-crystalline (LLC) mesophases with [Zn(H2O)6](NO3)2 in the presence of a minimum concentration of 1.75 H2O per C12EO10. The metal ion/C12EO10 mole ratio can be increased up to 8.0, which is a record high metal ion density in an LLC mesophase. The metal ion concentration can be increased in the medium by increasing the CTAB/C12EO10 or SDS/C12EO10 mole ratio at the expense of the stability of the LLC mesophase. The structure and some thermal properties of the new mesophase have been investigated using XRD, POM, FTIR, and Raman techniques.  相似文献   

14.
The grain size and regularity of the hexagonal array of mesoporous silica nanoparticles were investigated in a binary surfactant system composed of cetyltrimethylammonium chloride and triblock copolymer EO106PO60EO106. Structural control was achieved by varying the parameters for the prior hydrolysis of silicon alkoxide under an acidic condition and the subsequent assembly of silicates and surfactants under a basic condition. The formation of the mesoscale architectures was based on the balance between the ordered assembly of anionic silicates and the cationic surfactant through electrostatic interaction and the inhibition of grain growth with a nonionic amphiphilic agent through hydrogen bonds.  相似文献   

15.
The structure, bonding and energetics of B(2)AlH(n)(m) (n = 3-6, m = -2 to +1) are compared with corresponding homocyclic boron, aluminum analogues and BAl(2)H(n)(m) using density functional theory (DFT). Divalent to hexacoordinated boron and aluminum atoms are found in these species. The geometrical and bonding pattern in B(2)AlH(4)(-) is similar to that for B(2)SiH(4). Species with lone pairs on the divalent boron and aluminum atoms are found to be minima on the potential energy surface of B(2)AlH(3)(2-). A dramatic structural diversity is observed in going from B(3)H(n)(m) to B(2)AlH(n)(m), BAl(2)H(n)(m) and Al(3)H(n)(m) and this is attributable to the preference of lower coordination on aluminum, higher coordination on boron and the higher multicenter bonding capability of boron. The most stable structures of B(3)H(6)(+), B(2)AlH(5) and BAl(2)H(4)(-) and the trihydrogen bridged structure of Al(3)H(3)(2-) show an isostructural relationship, indicating the isolobal analogy between trivalent boron and divalent aluminum anion.  相似文献   

16.
In this paper we present aluminum phosphate nanocrystals, prepared by a hydrothermal reaction, using amphiphilic triblock copolymer F127 [(EO)106(PO)70(EO)106] as a morphology‐directing template. By verifying the pH from 10 to 12, the morphology progression of AlPO4 nanocrystals from nanoparticles to nanoparticle‐aggregated nanowires, and finally to multi‐strand nano‐ropes, was successfully demonstrated. The most influential factors in the morphology process were the initial pH level, the participation of surfactant‐template F127, and the change in pH during the reaction. We proposed a pH‐dependent model to illustrate both the growth of AlPO4 nanocrystals inside F127 amphiphilic domains and the chemical driving force that aggregated the nanoparticles into chain‐shaped nanowires. The incorporation of water molecules as H‐bonding linkers, to combine single nanowires into multi‐strand nano‐ropes, is also discussed in this model. Powder X‐ray diffraction (XRD) patterns of the nanoparticle‐aggregated nanowires and multi‐strand nano‐ropes were consistent with a mixed phase of berlinite and cristobalite structures, corresponding to the low‐temperature form (a‐form), while the AlPO4 nanoparticles showed a pure berlinite phase only.  相似文献   

17.
Thin films of nanoporous tin oxide with a 3D face-centered orthorhombic nanostructure have been synthesized by self-assembly that is controlled by post-coating thermal treatment under controlled humidity. In contrast to the conventional evaporation-induced self-assembly (EISA), the films here have no ordered nanostructure after dip-coating. However, the initial coatings are formed under conditions that inhibit significant hydrolysis and condensation for extended periods. This allows the use of postsynthesis thermal vapor treatments to completely control the formation of the nanostructure. With EO106-PO70-EO106 (Pluronic F127) triblock copolymer as the template, highly ordered nanostructures were generated by exposing the disordered films to a stream of water vapor at elevated temperature, which rehydrates the films and allows the formation of the thermodynamically favored phase. Further exposure to water vapor drives the condensation reaction through the elimination of HCl. The X-ray diffraction pattern from the nanostructure was indexed in the space group Fmmm as determined by analysis of 2D small-angle X-ray scattering patterns at various angles of incidence. The nanostructure is then stabilized and made nanoporous by extended controlled thermal treatments. After self-assembly and template removal, the films are thermally stable up to 600 degrees C and retain an ordered, face-centered orthorhombic nanostructure.  相似文献   

18.
WxC/SBA-16催化剂的制备、表征及催化加氢脱硫性能   总被引:2,自引:0,他引:2  
以正硅酸乙酯为硅源, 仲钨酸铵为钨源, P123和F127为混合模板剂,采用水热晶化法一步合成了不同钨含量(以n(Si):n(W)表示)的WO3/SBA-16, 然后经甲烷/氢气(V(CH4)/V(H2)=1/4)混和气体程序升温还原碳化(TPC), 制备出了WxC/SBA-16(x=1, 2)催化剂. 采用XRD、N2-吸附/脱附、TEM和FTIR等分析测试技术对样品的结构进行了表征, 并以噻吩作为模型化合物, 对WxC/SBA-16催化剂的加氢脱硫催化活性进行了评价. 结果表明, 在一定钨含量的条件下, WO3/SBA-16和WxC/SBA-16样品仍然保持立方笼状介孔结构, 当n(Si):n(W)为30-10时, 碳化钨的物相为W2C; n(Si):n(W)为7.5时, 碳化钨的物相为W2C和WC. WxC/SBA-16催化剂表现出了良好的加氢脱硫催化性能.  相似文献   

19.
Chromatographic behavior of synthetic block (co)oligomer samples (EO)n(PO)m(EO)n and (PO)n(EO)m(PO)n with different distribution of propylene oxide (PO) and ethylene oxide (EO) monomer units was investigated on three types of stationary phases on zirconium dioxide support: Zr-PS (polystyrene), Zr-carbon, and Zr-carbon C18. The effects of the distribution and sequence of the oxyethylene and oxypropylene monomer units on the chromatographic retention depend on the type of the stationary phase, but are strongly affected by the organic modifier (methanol or ACN) in aqueous-organic mobile phase. Special attention was focused on the influence of the mobile-phase composition on the separation according to the EO and PO distribution. Zirconia-based columns are stable at elevated temperatures and can be used in high-temperature LC (HTLC); hence, we investigated the temperature effects on the chromatographic behavior up to 90 degrees C. The applications of solvent and temperature gradients were compared on the zirconia stationary phases in the RP mode.  相似文献   

20.
In our previous study (Wang, Y. Q.; Yang, C.-M.; Zibrowius, B.; Spliethoff, B.; Lindén, M.; Schüth, F. Chem. Mater. 2003, 15, 5029), mesoporous vinyl-functionalized silica (vinyl silica) with hexagonal P6mm and cubic Ia3d structures has been synthesized at different loadings of vinyl groups and at different concentrations of sodium chloride when triblock copolymer P123 was used as a template. Our further investigations presented in this article reveal that at a loading of 10% vinyl groups, well-ordered cubic Ia3d structure was obtained at a low concentration of Na2SO4 (0.5 M) and the hexagonal structure was produced at 1.0 M NaCl. When NaNO3 was used as the inorganic salt, the hexagonal structure was still maintained even at a salt concentration of 2.0 M. The result is in accordance with the Hofmeister series order (salting-out effect): SO4(2-) > Cl- > NO3(-). The lowering of the acidity also induced the formation of the cubic Ia3d structure. At 20% loading, hexagonal structure can be obtained by adding the more hydrophilic Pluronic F127 (EO106PO70EO106) to the acidic solutions of P123, but the hexagonal structure cannot be produced with pure P123 under the synthesis conditions investigated. All of these results can be rationalized through hydrophilic-hydrophobic balance and the change in micellar curvature. Furthermore, 10% mercaptopropyl-functionalized mesoporous silica with cubic Ia3d structure was designed and synthesized successfully with the assistance of an inorganic salt (NaCl) in an acidic solution of P123, which is the first example of mercaptopropyl-functionalized large-pore mesoporous silica with high loadings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号