首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular structure of 1,4,6,8-tetramethylfuro[2,3-h]quinolin-2(1H)-one (FQ), a recent furocoumarin-like photosensitizer, has been modified with the aim of reducing its strong genotoxicity, by replacing the methyl group at 4 position with a hydroxymethyl one, and so obtaining 4-hydroxymethyl-1,6,8-trimethylfuro[2,3-h]quinolin-2(1H)-one (HOFQ). This modification gave rise to a strong reduction of lipophilicity and dark interaction with DNA. The formation of monoadducts (MA) was deeply affected, whereas the induction of bifunctional adducts between DNA and proteins (DPC(L>0)) was replaced by an efficient production of DNA-protein cross-links at zero length (DPC(L=0)), probably via guanine damage. Because of its angular molecular structure, HOFQ does not form interstrand cross-links (ISC): therefore, DPC(L=0) and MA represent the main lesions induced by HOFQ in DNA. In comparison with FQ (which induces MA and DPC(L>0)) and 8-methoxypsoralen (8-MOP) (MA, ISC, DPC(L>0)), HOFQ seems to be a more selective agent. In fact, contrary to FQ and 8-MOP, HOFQ, together with a noticeable antiproliferative activity, shows low levels of point mutations in bacteria and of clastogenic effects in mammalian cells. HOFQ is also an efficient apoptosis inducer, especially in comparison with 8-MOP, when tested at equitoxic experimental conditions; this property might be correlated with the complete HOFQ inability of inducing skin erythemas, a well-known side effect of classic furocoumarin photosensitization.  相似文献   

2.
4,6,8,9-Tetramethyl-2H-furo[2,3-h]quinolin-2-one (HFQ) and its isomer FQ (1,4,6,8-tetramethyl-2H-furo[2,3-h]quinolin-2-one) showed very strong antiproliferative activity in mammalian cells, about two times greater than 8-methoxypsoralen (8-MOP). Both compounds induced DNA-protein cross-links (DPC) but not interstrand cross-links. The FQ generated DPC in a biphotonic process, yielding a new kind of diadduct, whereas HFQ induced DPC by a monophotonic one, probably without its physical participation in the covalent bridge. These lesions gave different toxic responses. Sensitization of FQ led to extensive DNA fragmentation and to a number of chromosomal aberrations. Conversely, HFQ seemed to be completely inactive and 8-MOP gave intermediate results. A strict relationship between DPC formation and induction of chromosomal aberrations was observed. The HFQ did not induce light skin erythemas, whereas FQ was more phototoxic than 8-MOP, thus suggesting that FQ lesions, DPC in particular, may be implicated in skin phototoxicity. Ehrlich ascites cells, a transplantable mouse tumor, inactivated by furoquinolinone sensitization and injected into healthy mice, protected them from a successive challenge by viable tumor cells. This response appeared to be based on an immune mechanism. Comparable amounts of base substitution revertants were scored when testing furoquinolinones and 8-MOP in bacteria but no DPC were detected. This suggests that classic mutagenesis tests on bacteria are insufficient to give adequate information on furocoumarin genotoxicity. Given its features, HFQ can be regarded as an interesting new agent for psoralen plus UVA photochemotherapy and photopheresis.  相似文献   

3.
Photopheresis is an extracorporeal form of photochemo-therapy with 8-methoxypsoralen (8-MOP) and UVA (PUVA). Patients ingest 8-MOP and then a psoralen-rich buffy coat is obtained by centrifugation and mixed with saline. This mixture is recirculated through a UVA radiation field and then reinfused. Photopheresis appears to be effective for several T cell-mediated disorders, because the treatment results in a specific immune response against the pathogenic clone of T cells involved. With PUVA therapy, the whole body of the patient is exposed to UVA, after ingestion of 8-MOP. Upon UVA exposure 8-MOP binds to, amongst others, DNA and induces DNA monoadducts and interstrand cross-links. As a result of these photoadducts photocarcinogenicity is a risk in PUVA. In PUVA for psoriasis, it proved that angular furocoumarins, although almost incapable of inducing DNA cross-links (less carcinogenic), are still effective. In order to determine if monoadducts induced by photopheresis could also be effective we used, specifically, 4,6,4'-trimethylangelicin (TMA). In this report, we compare the photodegradation of both TMA and 8-MOP under conditions relevant to the in vivo situation, as well as the effect both compounds have on the viability of rat lymphocytes as measured with the 3–(4,5-dimethylthia-zol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. We show that TMA did not induce immunosuppression in vivo , even after extensive irradiation. In addition a dose dependency of 8-MOPNVA versus the induced immune suppression was carried out. It was shown that there is a log doselresponse correlation of r = 0.9205.  相似文献   

4.
The reactivity of lutetacyclopentadiene towards N,N′‐diphenylcarbodiimide (DPC) was systematically investigated to efficiently construct three types of new N‐containing fused cyclic complexes. The outcome of these reactions significantly depended on the the metal center, the concentration of LiCl, the number of equivalents of DPC, and the solvent. Thus, two unexpected reaction modes of amidinate were discovered for the first time, which were ascribed to an unusual κ1 coordination mode of amidinate driven by a rigid seven‐membered ring. These results are in striking contrast with the previously well‐investigated zirconacyclopentadiene, which reacts with DPC to give azazirconacyclopentene and alkyne through β,β′ C?C bond cleavage. The difference in reactivity between lutetacyclopentadiene and zirconacyclopentadiene can be attributed to the highly ionic character of the Lu?C(sp2) bonds. DFT calculations agreed well with the experimental results.  相似文献   

5.
Some photochemical and photobiological properties of 4,6,8,9-tetramethyl-2H-furo[2,3-h]quinolin-2-one (HFQ) were studied in comparison with its isomer 1,4,6,8-tetramethyl-2H-furo[2,3-h]quinolin-2-one (FQ) and 8-methoxypsoralen (8-MOP). The HFQ photobinds to DNA forming furan-side monoadducts (MAHFQ) that have molecular structure very similar to those of FQ (MAFQ). Unlike MA8-MOP and MAFQ, MAHFQ no longer photoreact. The HFQ, like FQ, produces moderate amounts of singlet oxygen but no superoxide anions. The HFQ and FQ induce numbers of DNA-protein cross-links (DPC), much more plentiful than those of 8-MOP (about two and seven times, respectively) but no interstrand cross-links. The mechanism of DPC formation was studied in vivo in mammalian cells by alkaline elution and in vitro using a new test mixing histones and DNA from calf thymus. The latter is a very useful technique for the double irradiation protocol. The DNA (or histones) are separately exposed to a first UVA dose in the presence of the sensitizer; then, after its unbound molecules have been removed, histones (or DNA) are added to assemble the chromatin-like complex that is irradiated again. According to in vitro and in vivo methods, DPC appear to be formed by FQ and 8-MOP by a biphotonic process that starts with monoadduct induction in DNA, followed by their conversion into DPC. In the resulting lesions, the sensitizer molecule forms a covalent bridge between the two macromolecules (DPC at length greater than zero). Instead, HFQ induces DPC by a monophotonic process; thus, HFQ is probably not a physical part of the bridge between DNA and proteins, which may be linked together directly, like DPC at zero length induced by UVC.  相似文献   

6.
Abstract— The effects of mono- and bifunctional furocoumarins plus UVA radiation (PUVA and related treatments) on the human immunodeficiency virus-1 (HIV-1) promoter were studied using HeLa cells stably transfected with the chloramphenicol acetyl transferase gene under the control of the HIV-1 promoter. The experiments were performed with three psoralens (5-methoxypsoralen, 5-MOP; 8-methoxypsoralen, 8-MOP; and 4′-aminomethyl-4,8,5′-trimethyl-psoralen, AMT) and four angelicins (angelicin; 4,5′-diniethylangclicin, 4,5′-DMA; 6,4′-dimethylangelicin, 6,4′-DMA; and 4,6,4′-trimethylangelicin, TMA). The drugs alone and UVA radiation alone showed no erect on the HIV promoter. However, when the cells were incubated with the furocoumarins at 0.1–40 μg/mL and then irradiated. the HIV promoter was activated in distinct fluence ranges, i.e. (1) no promoter activity was discernible at low fluences (e.g. at 0.1 μg/mL of 8-MOP up to 100 kJ/m2), (2) as the fluence was increased, the promoter activity increased to reach a maximum (10–50-fold with respect to the unexposcd samples), and (3) as the fluence was further increased, the promoter activity decreased. Similar (although shifted on the fluence scale) pattcrns were observed with either > 340-nm UVA radiation or with UVA radiation contaminated with a small amount of UVB radiation (typical for PUVA lamps). The effective fluences were inversely related to the drug concentration. Experiments with 5-MOP and 8-MOP indicated reciprocity of the drug concentration and radiation hence. The HIV promoter response patterns were similar for monofunctional angelicins and bifunctional psoralens. This indicated that the furocoumarin-DNA crosslinks are not a prerequisite for the promoter activation and that the monoadducts suffice to elicit the HIV promoter response. The HIV promoter-activating effectiveness of diKcrent drugs correlated with their photosensitizing potential. Thus, among psoralens the effectiveness order was AMT >. 5-MOP >8-MOP, and among angelicins: TMA > 6,4′-DMA > 4,5′-DMA > angelicin. The ektiveness did not vary substantially for 5-MOP, 8-MOP, 4,5′-DMA, and 6,4′-DMA. The combined drug and UVA radiation doses were higher than those that elicit cellular responses or those that may be received by the human white blood cells during cxtracorporeal PUVA therapy (photopheresis).  相似文献   

7.
《中国化学快报》2021,32(10):3252-3256
Covalent DNA–protein cross-links are toxic DNA lesions that interfere with essential biological processes, which can cause serious biological consequences, such as genomic instability and protein misexpression. 5-Formyluracil (5fU) as an important modification in DNA, which is mainly from oxidative damage, exists in a variety of cells and tissues. We have reported that 5fU mediated DNA–protein conjugates could exist in human cells [Zhou et al. CCS Chem. 2 (2020) 54–63]. We now aimed to explore its potential biological effects in vitro and in vivo. In this paper, we firstly reported that 5fU intermediated DNA–peptide or DNA–protein conjugates (both were called DPCs) could inhibit different polymerases bypass or cause mutations. Then we further investigated the functional impacts caused by 5fU-mediated DPCs, which appeared in different gene expression components [in the promoter sequence or 5′-untranslated regions (UTR)]. These results together may contribute to a broader understanding of DNA–protein interactions as well as the biological functions associated with 5fU.  相似文献   

8.
Tetrahedron DNA structures were formed by the assembly of three-way junction ( TWJ ) oligonucleotides containing O6-2′-deoxyguanosine-alkylene-O6-2′-deoxyguanosine (butylene and heptylene linked) intrastrand cross-links (IaCLs) lacking a phosphodiester group between the 2′-deoxyribose residues. The DNA tetrahedra containing TWJs were shown to undergo an unhooking reaction by the human DNA repair protein O6-alkylguanine DNA alkyltransferase (hAGT) resulting in structure disassembly. The unhooking reaction of hAGT towards the DNA tetrahedra was observed to be moderate to virtually complete depending on the protein equivalents. DNA tetrahedron structures have been explored as drug delivery platforms that release their payload in response to triggers, such as light, chemical agents or hybridization of release strands. The dismantling of DNA tetrahedron structures by a DNA repair protein contributes to the armamentarium of approaches for drug release employing DNA nanostructures.  相似文献   

9.
Interaction of K2[PdCl4] (I) and (C5H12NO)2[PdCl4] (II) with DNA in vitro is studied. No fragmentation of DNA occurs under the action of II. The interstrand cross-links are formed due to the formation of complexes with purine and pyrimidine bases; no interaction with DNA phosphates is observed. The cation does not play an essential role in the formation of cross-links.  相似文献   

10.
A spectral peak at ~421 nm appeared in vivo spectrum of Rhodopseudomonas palustris CQV97 cultured in acetate–glutamate medium (M1) but not in acetate–ammonium sulfate medium (M2). However, the spectral origin of 421 nm peak was not clear and frequently attributed to carotenoid component(s). In this study, comparative analysis of the extracted components showed that magnesium protoporphyrin IX monomethylester (MPE) was accumulated as one of the predominate components in M1 culture. The amounts of bacteriochlorophyll a in M1 culture were higher than that in M2, whereas the amounts of carotenoids were nearly identical in both cultures. A simple, rapid and minimum interference with carotenoid and bacteriochlorophyll method to efficiently extract the compounds involving in the formation of 421 nm peak was developed in this study. Assembly of purified MPE with protein components from R. palustris in vitro demonstrated that MPE caused the formation of 421 nm peak. The localization analysis in vivo demonstrated it is MPE associating to protein components and accounting for the peak at ~421 nm. This work clarified the 421 nm peak in vivo mainly originated from MPE accumulation, and will be very helpful to further explore the physiological roles of MPE or its derivatives in photosynthesis.  相似文献   

11.
The capacity of some linear and angular furocoumarins to induce DNA-protein cross-links by UVA (320–400 nm) irradiation has been evaluated in Chinese hamster ovary cells. Two linear furocoumarins, psoralen and 8-methoxypsoralen appeared to be capable of inducing DNA-protein cross-links to a noticeable extent. 4'-Methylangelicin and 4,4'-dimethylangelicin formed only reduced amounts of DNA-protein cross-links, while angelicin and 4,6,4'-trimethylangelicin seemed to be unable to induce significant levels of this lesion. The biological significance of this damage remains to be elucidated, but it might have an important role in furocoumarin sensitization. In the examined compounds, the capacity for inducing DNA-protein cross-links appears to be a property of the skin phototoxic furocoumarins. This result suggests the hypothesis of a connection between this damage and the formation of skin erythemas.  相似文献   

12.
Single‐stranded telomeric DNA tends to form a four‐base‐paired planar structure termed G‐quadruplex. Although kinds of G‐quadruplex structures in vitro have been documented in the presence of potassium or sodium, recognition of these DNA motifs (both in vitro and in vivo) is still an important issue in understanding the biological function of the G‐quadruplex structures in telomeres as well as developing anticancer agents. Herein we address this important question through the distinctive properties of a supramolecular system of cyanine dye 3,3′‐di(3‐sulfopropyl)‐4,5,4′,5′‐dibenzo‐9‐methyl‐thiacarbocyanine triethylammonium salt (MTC) upon binding to different DNA motifs. Interaction of MTC with hybrid/mixed G‐quadruplex results in a set of unique spectrophotometric signatures which are completely different from those arising from binding to other DNA motifs. Furthermore, such feature could be extended to map the locations of DNAs on interface. Linear duplex and mixed G‐quadruplex in human telomeres assembled on Au film and stained by MTC were directly recognized by confocal laser scanning microscopy (CLSM). All results suggested that MTC supramolecular system may be a good probe of specific G‐quadruplex structure.  相似文献   

13.
Nucleotide excision repair and the ATR‐mediated DNA damage checkpoint are two critical cellular responses to the genotoxic stress induced by ultraviolet (UV) light and are important for cancer prevention. In vivo genetic data indicate that these global responses are coupled. Aziz Sancar et al. developed an in vitro coupled repair‐checkpoint system to analyze the basic steps of these DNA damage stress responses in a biochemically defined system. The minimum set of factors essential for repair‐checkpoint coupling include damaged DNA, the excision repair factors (XPA, XPC, XPF‐ERCC1, XPG, TFIIH, RPA), the 5′‐3′ exonuclease EXO1, and the damage checkpoint proteins ATR‐ATRIP and TopBP1. This coupled repair‐checkpoint system was used to demonstrate that the ~30 nucleotide single‐stranded DNA (ssDNA) gap generated by nucleotide excision repair is enlarged by EXO1 and bound by RPA to generate the signal that activates ATR.  相似文献   

14.
A series of ferrocenyl analogues and derivatives of paclitaxel and docetaxel were synthesised and assayed for their antiproliferative/cytotoxic effects, impact on the cell cycle distribution and ability to induce tubulin polymerisation. The replacement of the 3′‐N‐benzoyl group of paclitaxel with a ferrocenoyl moiety, in particular, led to formation of an analogue that was at least one order of magnitude more potent in terms of antiproliferative activity than the parent compound (IC50 values of 0.11 versus 1.11 μm , respectively), but still preserved the classical taxane mode of action, that is, microtubule stabilisation leading to mitotic arrest. Molecular docking studies revealed an unexpected binding pocket in the tubulin structure for the ferrocenoyl group introduced in the paclitaxel backbone.  相似文献   

15.
The decay processes of the lowest excited singlet and triplet states of five methylated angelicins (4,6,4′-trimethyl-angelicin, MA, and four methylated thioangelicins, MTA; see Scheme 1) were investigated in live solvents by stationary and pulsed fluorometric and flash photolytic techniques. In particular, the solvent effects on absorption, fluorescence, quantum yields of fluorescence (φF) and triplet formation (φT), lifetimes of fluorescence (τF) and the triplet state (τT) and the quantum yields of singlet oxygen production (φΔ) were investigated. Semiempirical (ZINDO/S-CI) calculations were carried out to obtain information (transition probabilities and nature) on the lowest excited singlet and triplet states. The quantum mechanical calculations and the solvent effect on the photophysical properties showed that the lowest excited singlet state (S1) is a partially allowed π,π* state, while the close-lying S2 state is n,π* in nature. The efficiencies of fluorescence, S1→T1 intersystem crossing (ISC) and S1→ S0 internal conversion (IC) strongly depend on the energy gap between S1, and S2 and are explained in terms of the so-called proximity effect. In fact, for MA in cyclohexane, only the S1→ S0 internal conversion is operative, while in acetonitrile and ethanol, where the n.π* state is shifted to higher energy, the efficiencies of fluorescence and ISC increase significantly. The energy gap between S1 and S2 increases in MTA, where the furanic oxygen is replaced by a sulfur atom. Consequently, the solvent effect on the photophysical parameters of MTA is less marked than for MA; e.g. fluorescence and triplet-triplet absorption are also detectable in the nonpolar cyclohexane. The lowest excited singlet state of molecular oxygen O2(1Dg) was produced efficiently in polar solvents by energy transfer from the T1 state of MA and MTA.  相似文献   

16.
A series of chromeno[4,3‐d]isoxazolo[5,4‐b]pyridin‐6‐one derivatives were easily and efficiently synthesized by the reaction of 3‐acyl‐2H‐chromen‐2‐ones with isoxazol‐5‐amine in acetic acid. Some synthesized compounds were evaluated for their antiproliferative properties in vitro against cancer cells, and these compounds were found to have some activities.  相似文献   

17.
The synthesis of new planar derivatives characterized by the presence of a pyridothiopyranopyrazole or pyridothiopyranopyrimidine nucleus, carrying a substituted aryl group, is reported. The novel 1,4‐dihydropyrido[3′,2′:5,6]thiopyrano[4,3‐c]pyrazole derivatives were obtained by condensation of 2,3‐dihydro‐3‐hydroxymethylenethiopyrano[2,3‐b]pyridin‐4(4H)‐ones with appropriate hydrazines. The preparation of 2‐substituted pyrido[3′,2′:5,6]thiopyrano[4,3‐d]pyrimidines was accomplished from the intermediate 2,3‐dihy‐dro‐3‐dimethylaminomethylenethiopyrano[2,3‐b]pyridin‐4(4H)‐ones by reaction with the appropriate binucleophile amidines. The antiproliferative activity of some new products was tested by an in vitro assay on human tumour cell lines (HL‐60 and HeLa), but none of them showed any significant effects in the tests performed. Accordingly, linear flow dichroism measurements indicated their inability to form a molecular complex with DNA.  相似文献   

18.
A kinetic model employing calculated atom and bond localization energies to approximate relative activation energies of reaction is used to analyse previously obtained experimental results for in vitro and in vivo chemical binding of polycyclic aromatic hydrocarbons to nucleic acids. It is found that in vitro linkage of hydrocarbons to DNA induced by a microsomal hydroxylating system is compatible with mechanisms involving either attack at the most reactive hydrocarbon center or attack at the most reactive hydrocarbon bond. Independent evidence leads us to favor the former mechanism. Further, the limited experimental data for in vivo linkage of hydrocarbons to DNA is found to be consistent with a model involving attack at the most reactive bond of the molecule: the “K region”. This model is supported by a close parallelism found between extent of hydrocarbons bound to DNA in vivo and the experimentally determined relative reactivities of their K regions.  相似文献   

19.
The synthesis of three bimetallic cyanido complexes with edbea [2,2′-(ethylenedioxy)bis(ethylamine)] ligand is reported. [NiII(μ-edbea)2{Au(μ-CN)2}2]n (1), [{CuII(edbea)}2{Au(μ-CN)2}4]n (2) and [CdII(edbea)2][Au(CN)2]2·H2O (3) were fully characterized by elemental, infrared, XRD (3), ESI-MS and thermal analysis. The DNA/BSA binding properties of these complexes were evaluated by spectrophotometric titration, fluorometric ethidium bromide kinetics, and DNA electrophoresis studies and their partially minor groove binding mode between the base pairs of DNA and electrostatic interaction between the amino acid residues of BSA were explained. The complexes were tested for their pharmacological properties. These molecules had excellent in vitro antiproliferative activity and also exhibited a strong tumor inhibiting effect against HT29, HeLa, C6 and Vero cell lines. These complexes had metastatic features as they are able to reduce cell migration activity and suppress tumor growth in vitro. Analysis of the DNA topoisomerase I relaxing activity indicates that the complexes do not inhibit topoisomerase I which regulates the topological states of the DNA double helix during DNA processing reactions. The TUNEL and DNA laddering assay results indicated that these compounds may destroy cell maintenance by triggering apoptosis. Immunohistochemistry staining analysis demonstrated that these complexes significantly decreased the expression of Bcl-2 in HeLa and HT29 cells while increasing the expression of P53 levels. Overall, the potent antiproliferative activity, low cytotoxic effect, good solubility, and micro molar range dosage observed for these complexes emphasizes their potential as anticancer drug candidates.  相似文献   

20.
Nucleosides and Nucleotides. Part 16. The Behaviour of 1-(2′-Deoxy-β-D -ribofuranosyl)-2(1H)-pyrimidinone-5′-triphosphate, 1-(2′-Deoxy-β-D -ribofuranosyl-2(1H))-pyridinone-5′-triphosphate and 4-Amino-1-(2′-desoxy-β-D -ribofuranosyl)-2(1H)-pyridinone-5′-triphosphate towards DNA Polymerase The behaviour of nucleotide base analogs in the DNA synthesis in vitro was studied. The investigated nucleoside-5′-triphosphates 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyrimidinone-5′-triphosphate (pppMd), 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppIId) and 4-amino-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppZd) can be considered to be analogs of 2′-deoxy-cytidine-5′-triphosphate. However, their ability to undergo base pairing to the complementary guanine is decreased. When pppMd, pppIId or pppZd are substituted for pppCd in the enzymatic synthesis of DNA by DNA polymerase no incorporation of these analogs is observed. They exhibit only a weak inhibition of the DNA synthesis. The mode of the inhibition is uncompetitive which shows that these nucleotide analogs cannot serve as substrates for the DNA polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号