首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Si nanowires (NWs), with diameters of about 800 nm and lengths of about 10 ??m, previously synthesized by the VLS method with gold catalyst, were carburized at 1,100 °C under methane for conversion into SiC nanostructures. These experiments have shown that Si NWs have been transformed into SiC nanotubes (NTs) with approximately the same sizes. Nanotubes?? sidewall thickness varies from 20 to 150 nm depending on the NTs?? height. These SiC nanotubes are hexagonal in shape and polycrystalline. A model of growth based on the out-diffusion of Si through the SiC layer was proposed to explain the transformation from Si nanowires to SiC nanotubes. This model was completed with thermodynamic calculations on the Si?CH2?CCH4?CO2 system and with results from complementary experiment using propane precursor. Routes for obtaining crystalline SiC NTs using this reaction are proposed.  相似文献   

2.
Photoelectrochemical properties of FTO/BiVO4 electrode were investigated in different electrolytic solutions, potassium chloride (KCl) and sodium sulphate (Na2SO4), and under visible light irradiation condition. In order to accomplish that, an FTO/BiVO4 electrode was built by combining the solution combustion synthesis technique with the dip-coating deposition process. The morphology and structure of the BiVO4 electrode were investigated through X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Photoelectrochemical properties were analyzed through chronoamperometry measurements. Results have shown that the FTO/BiVO4 electrode presents higher electroactivity in the electrolyte Na2SO4, leading to better current stabilization, response time, and photoinduced current density, when compared to KCl electrolyte. Besides, this electrode shows excellent performance for methylene blue degradation under visible light irradiation condition. In Na2SO4, the electrode has shown higher degradation rate, 51 %, in contrast to 44 % in KCl, plus higher rate constant, 174?×?10?4 min?1 compared to 150?×?10?4 min?1 in KCl. Results presented in this communication leads to the indication of BiVO4 thin films as alternate materials to use in heterogeneous photoelectrocatalysis, more specifically in decontamination of surface water.  相似文献   

3.
In this research, the effect of the different concentrations of NaSnO3 as the electrolyte additive in 0.7 mol L?1 NaCl solution on the electrochemical performances of the magnesium-8lithium (Mg-8Li) electrode are investigated by methods of potentiodynamic polarization, potentiostatic current-time, electrochemical impedance technique, and scanning electron microscopy (SEM). The corrosion resistance of the Mg-8Li electrode is improved when Na2SnO3 is added into the electrolyte solution. The potentiostatic current-time curves show that the electrochemical behaviors of the Mg-8Li electrode in the electrolyte solution containing 0.20 mmol L?1 Na2SnO3 is the best. The electrochemical impedance spectroscopy results indicate that the polarization resistance of the Mg-8Li electrode decreases in the following order with the concentrations of Na2SnO3: 0.05 mmol L?1?>?0.00 mmol L?1?>?0.30 mmol L?1?>?0.10 mmol L?1?>?0.20 mmol L?1. The scanning electron microscopy studies indicate that the electrolyte additive prevents the formation of the dense oxide film on the alloy surface and facilitates the peeling off of the oxidation products.  相似文献   

4.
Herein, we show the synthesis of high-capacity anode, InFeCoO4 spinel for lithium ion batteries (LIBs), by facile glycine-assisted chemical approach. The structure and morphology are evaluated by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and scanning electron microscopy (SEM) techniques, respectively. The pure phase formation of spinel InFeCoO4 is confirmed from XRD pattern, whereas the oxidation state of Co in 2+ is determined from XAS analysis. Electrochemical performance of InFeCoO4 in the half-cell configuration is evaluated by galvanostatic and cyclic voltammetry (CV) in the voltage window of 0.005–3.0 V vs. Li. When cycled at 60 mA g?1, it shows a high first cycle reversible capacity of 750 (±10) mA h g?1. However, slow capacity degradation is noticed upon cycling and reached 285 (±10) mA h g?1 after 40 cycles. An improved Li-storage performance is noticed under similar cycling condition, when the electrode is heat-treated. It shows first cycle reversible capacity of 880 (±10) mA h g?1 and reached 535 (±10) mA h g?1 after 40 cycles. The coulombic efficiency is >98 % during cycling. The improved Li-storage performance is possibly due to the distribution of PVDF (binder) in the active materials as well as better electrical contact after heat treatment.  相似文献   

5.
An effective potentiometric sensor had been fabricated for the rapid determination of Pb2+ based on carbon paste electrode consisting of room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), multiwalled carbon nanotubes (MWCNTs), nanosilica, synthesized Schiff base, as an ionophore, and graphite powder. The constructed nanocomposite electrode showed better sensitivity, selectivity, response time, response stability, and lifetime in comparison with typical Pb2+ carbon paste electrode for the successfully determination of Pb2+ ions in water and in waste water samples. The best response for nanocomposite electrode was obtained with electrode composition of 18% ionophore, 20% BMIM-PF6, 49% graphite powder, 10% MWCNT, and 3% nanosilica. The new electrode exhibited a Nernstian response (29.76?±?0.10 mV decade?1) toward Pb2+ ions in the range of 5?×?10?9?C1.0?×?10?1 mol L?1 with a detection limit of 2.51?×?10?9 mol L?1. The potentiometric response of prepared sensor is independent of the pH of test solution in the pH range of 4.5?C8.0. It has quick response with response time of about 6 s. The proposed electrode show fairly good selectivity over some alkali, alkaline earth, transition, and heavy metal ions.  相似文献   

6.
Sea anemone-like zinc-cobalt (Zn-Co) oxysulfides grown on nickel foam were synthesized by a hydrothermal treatment for the first time as a battery-type electrode for hybrid supercapacitors. Such a binder-free sea anemone-like Zn-Co oxysulfide electrode displays improved electrochemical properties, which can be attributed to the unique sea anemone-like morphology and the partly replacement of oxygen with sulfur since sulfur possesses a lower electronegativity. As a result, the Zn-Co oxysulfide electrode exhibits a specific capacity of 645.5 C g?1 (1 A g?1) which is much higher than 386.0 C g?1 of Zn-Co oxide electrode at the same conditions. In addition, the Zn-Co oxysulfide electrode also demonstrates good cycling stability (76.1% capacity retention after 1000 cycles). According to these, the Zn-Co oxysulfide electrode is testified to be a promising faradaic electrode for energy storage.  相似文献   

7.
Al-doped ZnO (AZO) was sputtered on the surface of LiNi1/3Co1/3Mn1/3O2 (NCM) thin film electrode via radio frequency magnetron sputtering, which was demonstrated to be a useful approach to enhance electrochemical performance of thin film electrode. The structure and morphology of the prepared electrodes were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, and transmission electron microscopy techniques. The results clearly demonstrated that NCM thin film showed a strong (104) preferred orientation and AZO was uniformly covered on the surface of NCM electrode. After 200 cycles at 50 μA μm?1 cm?2, the NCM/AZO-60s electrode delivered highest discharge capacity (78.1 μAh μm?1 cm?2) compared with that of the NCM/AZO-120s electrode (62.4 μAh μm?1 cm?2) and the bare NCM electrode (22.3 μAh μm?1 cm?2). In addition, the rate capability of the NCM/AZO-60s electrode was superior to the NCM/AZO-120s and bare NCM electrodes. The improved electrochemical performance can be ascribed to the appropriate thickness of the AZO coating layer, which not only acted as HF scavenger to keep a stable electrode/electrolyte interface but also reduced the charge transfer resistance during cycling.  相似文献   

8.
Chitosan–ZnO nanostructures were prepared by chemical precipitation method using different concentration of zinc chloride and sodium hydroxide solutions. Nanorod-shaped grains with hexagonal structure for samples annealed at 300 °C and porous structure with amorphous morphology for samples annealed at 600 °C were revealed in SEM analysis. X-ray diffraction patterns confirmed the hexagonal phase ZnO with crystallite size found to be in the range of ~24.15–34.83 nm. Blue shift of UV–Vis absorption shows formation of nanocrystals/nanorods of ZnO with marginal increase in band gap. Photoluminescence spectra show that blue–green emission band at 380–580 nm. The chitosan–ZnO nanostructures used on surface of a glassy carbon electrode gives the oxidation peak potential at ~0.6 V. The electrical conductivity of chitosan–ZnO composites were observed at 2.1?×?10?5 to 2.85?×?10?5?S/m. The nanorods with high surface area and nontoxicity nature of chitosan–ZnO nanostructures observed in samples annealed at 300 °C were suitable as a potential material for biosensing.  相似文献   

9.
In this paper, ZnO microspheres, which are composed of irregular nanoparticles, have been synthesized successfully from a metal-organic precursor. The average diameter is about 3.5 μm and the specific surface area is 7.53 m2 g?1. Measured by electrochemical tests as electrode materials for supercapacitors, the ZnO powders show high specific capacitances (1017.5 Fg?1 at 5 Ag?1 and 562.5 Fg?1 at 50 Ag?1, respectively) and excellent cycling stability (the specific capacitance was kept at 631.2 Fg?1 and 89.2 % retention after 3000 cycles at 18 Ag?1). These results show that the microspherical ZnO could be a potential electrode material for supercapacitors.  相似文献   

10.
A simple and low-cost strategy is developed to fabricate three-dimensional (3D) nitrogen-doped carbon cloth electrode through surface activation and nitrogen-doping process. The process can exfoliate the smooth surfaces of micro carbon fibers into nanostructures together with the doping of nitrogen-containing species. The as-fabricated carbon cloth electrode shows excellent areal capacitances of 882.36 and 706.68 mF cm?2 at the current density of 1 and 60 mA cm?2, respectively, exhibiting good rate performance. It also exhibits outstanding cycling stability with 98.7 % retention of its initial capacitance after 30,000 continuous charging/discharging tests. When the electrodes were assembled and tested as a symmetric supercapacitor, it also demonstrates superior electrochemical performance. It is believed that the 3D carbon structures with enlarged surface area, improved conductivity and electrode/electrolyte wettability, and enhanced pseudocapacitance by doping of nitrogen lead to the vast improvement of electrochemical performance.  相似文献   

11.
Hexagonal β-Ni(OH)2 nanosheets with thickness of ~12 nm were synthesized by a hydrothermal method at 150 °C using nickel chloride as nickel source and morpholine as alkaline. Electrodes for application in pseudocapacitor were assembled through a traditional technique: pressing a mixture of β-Ni(OH)2 nanosheets and acetylene black onto nickel foam. Due to the hexagonal shape of rigid β-Ni(OH)2 nanosheet and the mediation of surface-modified glycerol during electrochemical charge–discharge cycles, a nanostructure of electrode material with facile interior pathway for the transfer of electrolyte was formed. As a result, the as-formed electrodes presented high specific capacitance of 1,917 F g?1 at current density of 1.6 A g?1 in 3 mol L?1 KOH solution. At high charge and discharge current density of 31.3 A g?1, the electrodes still remained a high specific capacitance of 1,289 F g?1. The interesting results obtained from this investigation may provide a new insight for the synthesis of electrode materials with high electrochemical performance.  相似文献   

12.
Nickel-cobalt layered double hydroxides (NiCo-LDH) were successfully deposited on nickel foam by a facile hydrothermal method using polyvinyl pyrrolidone (PVP) as the structure-directing reagent. The effect of PVP on the morphology and electrochemical performance of binder-free NiCo-LDH electrode for supercapacitor were investigated in detail. The prepared NiCo-LDH presented good dispersivity and appeared different flower-like structure via the addition of PVP. Specially, the NiCo-LDH electrode using 1 g of PVP exhibited a superior performance with a high-specific capacity of 724.9 C g?1 at a current density of 1 A g?1 and 577.1 C g?1 at 10 A g?1. In addition, a hybrid supercapacitor (HSC) based on the optimized NiCo-LDH as positive electrode and activated carbon as negative electrode was assembled with 6 M KOH as the electrolyte. The HSC device can deliver an energy density of 32.3 Wh kg?1 at the power density of 387.1 W kg?1. Moreover, the HSC device exhibited a good cycling stability with a retention rate of 94.0% after 2000-cycle charge-discharge test at 3 A g?1.  相似文献   

13.
ZnCo2O4 nanoflakes were directly grown on Ni foam via a two-step facile strategy, involving cathodic electrolytic electrodeposition (ELD) method and followed by a thermal annealing treatment step. The results of physical characterizations exhibit that the mesoporous ZnCo2O4 nanoflakes have large electroactive surface areas (138.8 m2 g?1) and acceptable physical stability with the Ni foam, providing fast electron and ion transport sites. The ZnCo2O4 nanoflakes on Ni foam were directly used as integrated electrodes for supercapacitors and their electrochemical properties were measured in 2 M KOH aqueous solution. The ZnCo2O4 nanoflake electrode exhibits a high capacitance of 1781.7 F g?1 at a current density of 5 A g?1 and good rate capability (62% capacity retention at 50 A g?1). Also, an excellent cycling ability at various current densities from 5 to 50 A g?1 was obtained and 92% of the initial capacitance maintained after 4000 cycles. The results demonstrate that the proposed synthesis route is cost-effective and facile and can be developed for preparation of electrode materials in other electrochemical supercapacitors.  相似文献   

14.
Lei Ding  Qing Xin  Xianfeng Dai  Jian Zhang  Jinli Qiao 《Ionics》2013,19(10):1415-1422
Carbon-supported copper phthalocyanine (CuPc/C) nanoclusters, as a novel suitable cathode catalyst in polymer electrolyte membrane fuel cells, have been synthesized via a combined solvent impregnation and milling procedure along with high-temperature treatment. For optimizing the electrocatalytic activity of the catalyst obtained, the electrode with varying Nafion ionomer contents in the catalyst layer was screened by cyclic voltammetry and linear sweep voltammetry employing a rotating disk electrode technique to investigate the effect of Nafion ionomer as for alkaline electrolyte. For comparative purposes, electrode with various contents of available anion-ionomer was also investigated. The results revealed that the content of Nafion ionomer can affect the oxygen reduction reaction activity of the CuPc/C catalyst and an optimal content of Nafion ionomer was around 3.5?×?101?μg?cm?2, which corresponds well with the electrode prepared using available anion-ionomer. The electrode prepared using Nafion ionomer can produce a comparable performance to that of using available anion-ionomer, giving an onset potential at 0.1 V with a half-wave potential of ?0.03 V. Furthermore, Koutechy–Levich analysis showed that the value of electron transfer number is in the range of 3.40 to 3.74 when using electrode with varying Nafion ionomer contents from 2.5?×?101 to 1.6?×?102?μg?cm?2. The membrane electrode assembly fabricated with the CuPc/C cathode catalyst with a loading of 3.6 mg?cm?2 and a Nafion membrane immersed in 3 M KOH for 48 h produced a power density of 3.8 mW?cm?2 at room temperature.  相似文献   

15.
A comparison of photocatalytic properties of ZnO nanostructures fabricated by different methods was carried out. The photocatalytic properties of as grown and Ar-ion-treated ZnO materials were tested using photocatalytic degradation of an aqueous solution of methyl orange dye serving as a model water contaminant. The reaction rate constants of methyl orange photodegradation for untreated ZnO nanorods grown by the method of gas-transport reactions and hydrothermal method were equal to 5.3 × 10?5 and 3.7 × 10?4 s?1, respectively, whereas for the case of the Ar-ion-treated samples they reached 1.85 × 10?4 and 5.9 × 10?4 s?1, respectively. Based on the analysis of the photoluminescence spectra, it is assumed that the difference in photocatalytic activity is connected with different type of defects predominant on the surfaces of ZnO nanorods grown by the hydrothermal and gas-transport reactions methods. The experimental results show that ZnO nanostructures grown by the hydrothermal method would be promising for producing efficient catalysts.  相似文献   

16.
Herein, 3D graphene/nickel foam (GE/NF) composite matrix was successfully fabricated by using NF as template through a self-catalytic thermal chemical vapor deposition process. By using the prepared GE/NF as substrate, CoS nanosheets were deposited via a facial one-step electrochemical deposition method. Owing to the advantage of GE in boosting the electrical contact between the electroactive host material and current collector, the as-prepared 3D CoS/GE/NF electrode demonstrated a superior capacitance value of 2308 F g?1 at 1 A g?1 and a high rate capability of 70.49% at 20 A g?1. After depositing the polypyrrole (PPY) film on 3D CoS/GE/NF electrode, the electrochemical performance of CoS was further greatly improved and delivered an extremely high capacitance value of 3450 F g?1 at 1 A g?1, with good rate capability (62.61% at 20 A g?1) and improved cycling stability. The enhanced electrochemical performance of PPY/CoS/GE/NF electrode is closely related to the advantage of PPY film in increasing the electrical conductivity and reinforcing the integrity of electrode.  相似文献   

17.
Rusi  C.-K. Sim  S. R. Majid 《Ionics》2017,23(5):1219-1227
Polyaniline (PANI) nanowire electrode was successfully prepared using electrodeposition method. The morphology, thickness, and electrochemical performance of PANI electrode can be controlled by varying the deposition scan rates. Lower deposition scan rate results in compact and aggregates of PANI nanowire morphology. The uniform nanowire of PANI was obtained at the applied scan rate of 100 mV s?1, and it was used as symmetric electrode coupled with H2SO4/polyvinyl alcohol (PVA) gel electrolyte. The different concentrations of H2SO4 acid in polymer electrolyte have influenced the electrochemical performance as well. The optimum specific capacitance and energy density of P100 PANI electrode in 3 M H2SO4/PVA gel polymer electrolyte was 377 F g?1 and 95.4 Wh kg?1 at the scan rate of 1 mV s?1. The good stability of the electrode in this system is applicable to many wearable electronics applications.  相似文献   

18.
A composite material, Ni1/3Co1/3Mn1/3(OH)2, is synthesized by chemical precipitation method for supercapacitors' electrode material. Physical characterizations using x-ray diffraction, energy-dispersive x-ray, and scanning electron microscopy show that Ni1/3Co1/3Mn1/3(OH)2 possesses an amorphous structure and higher specific surface area (268.5 m2?g?1), which lead to a high initial specific capacitance of 1,403 F?g?1 in the potential window of 0–1.5 V. It may be a potential electrode material for future supercapacitor when its cycling stability and rate performance are addressed.  相似文献   

19.
TiO2-reduced graphene oxide (RGO) composite was synthesized via a sol-gel process and investigated as an anode material for sodium-ion batteries (SIBs). A remarkable improvement in sodium ion storage with a reversible capacity of 227 mAh g?1 after 50 cycles at 50 mA g?1 is achieved, compared to that (33 mAh g?1) for TiO2. The enhanced electrochemical performance of TiO2-RGO composite is attributed to the larger specific surface area and better electrical conductivity of TiO2-RGO composite. The excellent performance of TiO2-RGO composite enables it a potential electrode material for SIBs.  相似文献   

20.
In the present paper, the use of a carbon paste electrode modified with 1-(4-(1, 3-dithiolan-2-yl)-6, 7-dihydroxy-2-methyl-6, 7-dihydrobenzofuran-3-yl)ethanone (DDE) and TiO2 nanoparticles prepared by a simple and rapid method was described. The modified electrode showed excellent properties for electrocatalytic oxidization of epinephrine (EP), acetaminophen (AC) and folic acid (FA). The apparent charge transfer rate constant, k s?=?1.14 s?1, and transfer coefficient, α?=?0.54, for electron transfer between the modifier and carbon paste electrode were calculated. It has been found that under optimum condition (pH?=?7.0) in cyclic voltammetry, the oxidation of EP occurs at a potential about 280 mV less positive than that of an unmodified carbon paste electrode. The values of transfer coefficients (α?=?0.46), catalytic rate constant (k?=?1.2?×?104 M?1 s?1) and diffusion coefficient (D?=?2.70?×?10?5 cm2 s?1) were calculated for EP. Differential pulse voltammetry (DPV) exhibited two linear dynamic ranges of 0.5 to 50.0 μM and 50.0 to 1,000 μM for EP. This modified electrode is quite effective not only for the detection of EP, AC and FA but also for the simultaneous determination of these species in a mixture. The limit of detection for EP, AC and FA is 0.10, 1.80 and 2.36 μM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号