首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness , and introduce appropriate scalings for the physical parameters so that these problems attain a limit when . We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method. Received February 4, 1998 / Revised version received May 26, 1999 / Published online June 21, 2000  相似文献   

2.
Summary We describe a numerical method to compute free surfaces in electromagnetic shaping and levitation of liquid metals. We use an energetic variational formulation and optimization techniques to compute, a critical point. The surfaces are represented by piecewise linear finite elements. Each step of the algorithm requires solving an elliptic boundary value problem in the exterior of the intermediate surfaces. This is done by using an integral representation on these surfaces.  相似文献   

3.
An approximation scheme is defined for incompressible miscible displacement in porous media. This scheme is constructed by using two methods. Standard mixed finite element is used for the Darcy velocity equation. A characteristics-mixed finite element method is presented for the concentration equation. Characteristic approximation is applied to handle the convection part of the concentration equation, and a lowest-order mixed finite element spatial approximation is adopted to deal with the diffusion part. Thus, the scalar unknown concentration and the diffusive flux can be approximated simultaneously. In order to derive the optimal L2L2-norm error estimates, a post-processing step is included in the approximation to the scalar unknown concentration. This scheme conserves mass globally; in fact, on the discrete level, fluid is transported along the approximate characteristics. Numerical experiments are presented finally to validate the theoretical analysis.  相似文献   

4.
An interpolation matched interface and boundary (IMIB) method with second-order accuracy is developed for elliptic interface problems on Cartesian grids, based on original MIB method proposed by Zhou et al. [Y. Zhou, G. Wei, On the fictious-domain and interpolation formulations of the matched interface and boundary method, J. Comput. Phys. 219 (2006) 228-246]. Explicit and symmetric finite difference formulas at irregular grid points are derived by virtue of the level set function. The difference scheme using IMIB method is shown to satisfy the discrete maximum principle for a certain class of problems. Rigorous error analyses are given for the IMIB method applied to one-dimensional (1D) problems with piecewise constant coefficients and two-dimensional (2D) problems with singular sources. Comparison functions are constructed to obtain a sharp error bound for 1D approximate solutions. Furthermore, we compare the ghost fluid method (GFM), immersed interface method (IIM), MIB and IMIB methods for 1D problems. Finally, numerical examples are provided to show the efficiency and robustness of the proposed method.  相似文献   

5.
In this work a finite element method for a dual-mixed approximation of Stokes and nonlinear Stokes problems is studied. The dual-mixed structure, which yields a twofold saddle point problem, arises in a formulation of this problem through the introduction of unknown variables with relevant physical meaning. The method approximates the velocity, its gradient, and the total stress tensor, but avoids the explicit computation of the pressure, which can be recovered through a simple postprocessing technique. This method improves an existing approach for these problems and uses Raviart-Thomas elements and discontinuous piecewise polynomials for approximating the unknowns. Existence, uniqueness, and error results for the method are given, and numerical experiments that exhibit the reduced computational cost of this approach are presented.  相似文献   

6.
A proper orthogonal decomposition (POD) method is applied to a usual finite volume element (FVE) formulation for parabolic equations such that it is reduced to a POD FVE formulation with lower dimensions and high enough accuracy. The error estimates between the reduced POD FVE solution and the usual FVE solution are analyzed. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is also shown that the reduced POD FVE formulation based on POD method is both feasible and highly efficient.  相似文献   

7.
We consider a stationary Stokes problem with a piecewise constant viscosity coefficient. For the variational formulation of this problem we prove a well-posedness result in which the constants are uniform with respect to the jump in the viscosity coefficient. We apply a standard discretization with a pair of LBB stable finite element spaces. The main result of the paper is an infsup result for the discrete problem that is uniform with respect to the jump in the viscosity coefficient. From this we derive a robust estimate for the discretization error. We prove that the mass matrix with respect to some suitable scalar product yields a robust preconditioner for the Schur complement. Results of numerical experiments are presented that illustrate this robustness property. This author was supported by the German Research Foundation through the guest program of SFB 540  相似文献   

8.
Summary. We formulate the compressible Stokes system given in (1.1) into a (new) weak formulation (2.1). A finite element method for this is presented. Existence and uniqueness of the finite element method is shown. An optimal error estimate for the numerical approximation is obtained. Numerical examples are given, showing its efficiency and rates of convergence of the approximate solutions that results from the discrete problem (3.1). Received October 20, 1996 / Revised version received January 21, 1999 / Published online: April 20, 2000  相似文献   

9.
In this paper, a fully discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension, which is leaded by combining the Back Euler time discretization with the two-step defect correction in space, is presented. In this method, we solve the nonlinear equations with an added artificial viscosity term on a finite element grid and correct these solutions on the same grid using a linearized defect-correction technique. The stability and the error analysis are derived. The theory analysis shows that our method is stable and has a good convergence property. Some numerical results are also given, which show that this method is highly efficient for the unsteady conduction-convection problems.  相似文献   

10.
A family of mixed finite elements for the elasticity problem   总被引:8,自引:0,他引:8  
Summary A new mixed finite element formulation for the equations of linear elasticity is considered. In the formulation the variables approximated are the displacement, the unsymmetric stress tensor and the rotation. The rotation act as a Lagrange multiplier introduced in order to enforce the symmetry of the stress tensor. Based on this formulation a new family of both two-and three-dimensional mixed methods is defined. Optimal error estimates, which are valid uniformly with respect to the Poisson ratio, are derived. Finally, a new postprocessing scheme for improving the displacement is introduced and analyzed.  相似文献   

11.
Summary. The paper deals with the finite element analysis of second order elliptic eigenvalue problems when the approximate domains are not subdomains of the original domain and when at the same time numerical integration is used for computing the involved bilinear forms. The considerations are restricted to piecewise linear approximations. The optimum rate of convergence for approximate eigenvalues is obtained provided that a quadrature formula of first degree of precision is used. In the case of a simple exact eigenvalue the optimum rate of convergence for approximate eigenfunctions in the -norm is proved while in the -norm an almost optimum rate of convergence (i.e. near to is achieved. In both cases a quadrature formula of first degree of precision is used. Quadrature formulas with degree of precision equal to zero are also analyzed and in the case when the exact eigenfunctions belong only to the convergence without the rate of convergence is proved. In the case of a multiple exact eigenvalue the approximate eigenfunctions are compard (in contrast to standard considerations) with linear combinations of exact eigenfunctions with coefficients not depending on the mesh parameter . Received September 18, 1993 / Revised version received September 26, 1994  相似文献   

12.
This paper focuses on the numerical analysis of a finite element method with stabilization for the unsteady incompressible Navier–Stokes equations. Incompressibility and convective effects are both stabilized adding an interior penalty term giving L 2-control of the jump of the gradient of the approximate solution over the internal faces. Using continuous equal-order finite elements for both velocities and pressures, in a space semi-discretized formulation, we prove convergence of the approximate solution. The error estimates hold irrespective of the Reynolds number, and hence also for the incompressible Euler equations, provided the exact solution is smooth.  相似文献   

13.
We discuss a choice of weight in penalization methods. The motivation for the use of penalization in computational mathematics is to improve the conditioning of the numerical solution. One example of such improvement is a regularization, where a penalization substitutes an ill-posed problem for a well-posed one. In modern numerical methods for PDEs a penalization is used, for example, to enforce a continuity of an approximate solution on non-matching grids. A choice of penalty weight should provide a balance between error components related with convergence and stability, which are usually unknown. In this paper we propose and analyze a simple adaptive strategy for the choice of penalty weight which does not rely on a priori estimates of above mentioned components. It is shown that under natural assumptions the accuracy provided by our adaptive strategy is worse only by a constant factor than one could achieve in the case of known stability and convergence rates. Finally, we successfully apply our strategy for self-regularization of Volterra-type severely ill-posed problems, such as the sideways heat equation, and for the choice of a weight in interior penalty discontinuous approximation on non-matching grids. Numerical experiments on a series of model problems support theoretical results.  相似文献   

14.
《Quaestiones Mathematicae》2013,36(1):121-138
Abstract

In recent years, fitted operator finite difference methods (FOFDMs) have been developed for numerous types of singularly perturbed ordinary differential equations. The construction of most of these methods differed though the final outcome remained similar. The most crucial aspect was how the difference operator was designed to approximate the differential operator in question. Very often the approaches for constructing these operators had limited scope in the sense that it was difficult to extend them to solve even simple one-dimensional singularly perturbed partial differential equations. However, in some of our most recent work, we have successfully designed a class of FOFDMs and extended them to solve singularly perturbed time-dependent partial differential equations. In this paper, we design and analyze a robust FOFDM to solve a system of coupled singularly perturbed parabolic reaction-diffusion equations. We use the backward Euler method for the semi-discretization in time. An FOFDM is then developed to solve the resulting set of boundary value problems. The proposed method is analyzed for convergence. Our method is uniformly convergent with order one and two, respectively, in time and space, with respect to the perturbation parameters. Some numerical experiments supporting the theoretical investigations are also presented.  相似文献   

15.
We present a sixth-order explicit compact finite difference scheme to solve the three-dimensional (3D) convection-diffusion equation. We first use a multiscale multigrid method to solve the linear systems arising from a 19-point fourth-order discretization scheme to compute the fourth-order solutions on both a coarse grid and a fine grid. Then an operator-based interpolation scheme combined with an extrapolation technique is used to approximate the sixth-order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid-independent convergence rate for solving convection-diffusion equations with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth-order compact (SOC) scheme, compared with the previously published fourth-order compact (FOC) scheme.  相似文献   

16.
In this paper we discuss the numerical approximation of the displacement form of the acoustic wave equation using mixed finite elements. The mixed formulation allows for approximation of both displacement and pressure at each time step, without the need for post-processing. Lowest-order and next-to-lowest-order Raviart–Thomas elements are used for the spatial discretization, and centered finite differences are used to advance in time. Use of these Raviart–Thomas elements results in a diagonal mass matrix for resolution of pressure, and a mass matrix for the displacement variable that is sparse with a simple structure. Convergence results for a model problem are provided, as are numerical results for a two-dimensional problem with a point source.  相似文献   

17.
The classical Hu–Washizu mixed formulation for plane problems in elasticity is examined afresh, with the emphasis on behavior in the incompressible limit. The classical continuous problem is embedded in a family of Hu–Washizu problems parametrized by a scalar α for which corresponds to the classical formulation, with λ and μ being the Lamé parameters. Uniform well- posedness in the incompressible limit of the continuous problem is established for α ≠ − 1. Finite element approximations are based on the choice of piecewise bilinear approximations for the displacements on quadrilateral meshes. Conditions for uniform convergence are made explicit. These conditions are shown to be met by particular choices of bases for stresses and strains, and include bases that are well known, as well as newly constructed bases. Though a discrete version of the spherical part of the stress exhibits checkerboard modes, it is shown that a λ-independent a priori error estimate for the displacement can be established. Furthermore, a λ-independent estimate is established for the post-processed stress. The theoretical results are explored further through selected numerical examples.  相似文献   

18.
In this paper, a kind of biquadratic finite volume element method is presented for two-dimensional Poisson’s equations by restricting the optimal stress points of biquadratic interpolation as the vertices of control volumes. The method can be effectively implemented by alternating direction technique. It is proved that the method has optimal energy norm error estimates. The superconvergence of numerical gradients at optimal stress points is discussed and it is proved that the method has also superconvergence displacement at nodal points by a modified dual argument technique. Finally, a numerical example verifies the theoretical results and illustrates the effectiveness of the method.  相似文献   

19.
Summary Seepage through porous media in most instances is not a two-dimensional flow phenomenon. One such situation which is investigated herein is the flow from a pond with a bottom formed by the rotation of a curve consisting of a small segment being horizontal and the remainder being an arbitrary convex shaped curve. The approach used to solve this free surface axisymmetric seepage problem is an alternating iteration scheme in conjunction with the Baiocchi transformation and method. The problem is split into two overlapping regions, one in which the free surface is treated and the other in which the singularity is treated. This approach does not require moving meshes and allows a very general prescribed shape for the pond boundary. The numerical approach to the reformulated seepage problem is presented along with several numerical results and comparisons. Also presented is a proof of uniqueness of the solution for such problems provided we make a certain smoothness assumption for the free surface.The alternating iteration scheme is proved to converge provided existence and certain smoothness for the iterates and for their free surfaces are assumed. The iterates involved are solutions of certain complementarity systems. The existence and regularity of these solutions is not investigated in this paper.  相似文献   

20.
In this paper we propose a unified formulation to introduce Lagrangian and semi-Lagrangian velocity and displacement methods for solving the Navier–Stokes equations. This formulation allows us to state classical and new numerical methods. Several examples are given. We combine them with finite element methods for spatial discretization. In particular, we propose two new second-order characteristics methods in terms of the displacement, one semi-Lagrangian and the other one pure Lagrangian. The pure Lagrangian displacement methods are useful for solving free surface problems and fluid-structure interaction problems because the computational domain is independent of the time and fluid–solid coupling at the interphase is straightforward. However, for moderate to high-Reynolds number flows, they can lead to high distortion in the mesh elements. When this happens it is necessary to remesh and reinitialize the transformation to the identity. In order to assess the performance of the obtained numerical methods, we solve different problems in two space dimensions. In particular, numerical results for a sloshing problem in a rectangular tank and the flow in a driven cavity are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号