共查询到20条相似文献,搜索用时 15 毫秒
1.
Jennifer Y. Kelly Julie N. L. Albert John A. Howarter Christopher M. Stafford Thomas H. Epps III Michael J. Fasolka 《Journal of Polymer Science.Polymer Physics》2012,50(4):263-271
We demonstrate the use of combined thermal annealing and solvent vapor annealing (SVA) to tune the morphology of thermally responsive block copolymer (BCP) thin films. The BCP, poly(styrene‐b‐tert‐butyl acrylate) (PS‐b‐PtBA), undergoes a chemical deprotection to poly(styrene‐b‐acrylic anhydride) (PS‐b‐PAH) above a temperature threshold, giving rise to a structural and morphological transition. Our experiments systematically examine different thermal annealing and SVA protocols with two solvents (tetrahydrofuran and acetone) and map the resulting morphologies. Assessments of these processing protocols were accelerated using temperature gradients. Our results demonstrate that the final nanoscale morphologies after SVA are determined by the changes in the relative solvent/polymer interactions and surface tensions of the polymer blocks that accompany deprotection. Because of these driving forces, certain processing combinations led to irreversible morphological states, whereas others present opportunities for further manipulation. Accordingly, our study reveals that the morphology of this thermally sensitive BCP can be altered through judicious choice of annealing protocol. The protocols that combine equal numbers of SVA and thermal annealing (TA) steps are not necessarily equivalent, and the order of the SVA relative to TA is a deciding factor in the final morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 相似文献
2.
Bates CM Strahan JR Santos LJ Mueller BK Bamgbade BO Lee JA Katzenstein JM Ellison CJ Willson CG 《Langmuir : the ACS journal of surfaces and colloids》2011,27(5):2000-2006
The orientation of cylinder-forming poly(styrene-block-methyl methacrylate) [P(S-b-MMA)] was investigated on two sets of polymeric surface treatments: 10 para-substituted polystyrene derivatives with <10 mol % poly(4-vinylbenzyl azide) and a series of poly(styrene-random-4-vinylbenzyl azide) [P(S-r-VBzAz)] copolymers with 5-100 mol % poly(4-vinylbenzyl azide). The copolymers were spin-coated to form thin films and then cross-linked by heating. The resulting films exhibited a range of surface tensions from 21 to 45 dyn/cm. Perpendicular orientation of P(S-b-MMA) cylinders was achieved with poly(p-bromostyrene) and all the [P(S-r-VBzAz)] copolymer surface treatments, most notably the homopolymer of poly(4-vinylbenzyl azide). Films made from these simple copolymers are as effective as random terpolymer alignment layers commonly made from both block monomers and a cross-linkable monomer. 相似文献
3.
Kitano H Akasaka S Inoue T Chen F Takenaka M Hasegawa H Yoshida H Nagano H 《Langmuir : the ACS journal of surfaces and colloids》2007,23(11):6404-6410
Block copolymer lithography is a promising method for fabricating periodical nanopatterns of less than 20 nm by self-assembly and can be applicable for fabricating patterned magnetic media with a recording density over 1 Tb/in.2. We found a simple technique to control the orientation of cylindrical microdomains in thin films. Simply by mixing polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymers with the homopolymer (PS or PMMA) of the major component, we could align the cylindrical microdomains perpendicular to the film surface. The added homopolymer induces conformational entropic relaxation of the block chains in microdomain space and stabilizes the perpendicular orientation of hexagonally packed cylindrical microdomains. Thus formed perpendicular cylinders can be readily aligned in a regular array with a grating substrate. 相似文献
4.
In I La YH Park SM Nealey PF Gopalan P 《Langmuir : the ACS journal of surfaces and colloids》2006,22(18):7855-7860
Random copolymers of P(S-r-MMA-r-HEMA)s with a distribution of surface reactive hydroxyl groups were synthesized to formulate neutral surface layers on a SiO2 substrate. The layers were designed to drive vertical orientation of lamellar microdomains in a top P(S-b-MMA) thin film. Copolymers with a styrene weight fraction (f(St)) of 0.58 and a HEMA fraction (f(HEMA)) ranging from 0.01 to 0.03, with a corresponding MMA fraction (f(MMA)) ranging from 0.41 to 0.39, in the P(S-r-MMA-r-HEMA) copolymer showed neutral surface characteristics. The morphology of block copolymer thin films was studied by scanning electron microscopy (SEM). P(S-r-MMA-r-HEMA) copolymers prepared by both living and classical free-radical polymerizations were equally effective in demonstrating the neutrality of the surface. These side-chain-grafted random copolymer brushes showed faster grafting kinetics than the end-chain-grafted P(S-r-MMA) because of multipoint attachment to the surface. The modified surfaces had a very thin layer of random copolymer brush (5-7 nm), which is desirable for effective pattern transfer. Furthermore, neutral surfaces could be obtained even when the grafting time was reduced to 3 h. These results indicate that the composition of the random copolymer brush, rather than its PDI or molecular weights, is the most important factor in controlling the neutrality of the surface. These results also demonstrate the feasibility of using a third comonomer (C) in the random copolymer brush P(A-r-B-r-C) to alter the interfacial and surface energies of a diblock copolymer (A-b-B). 相似文献
5.
Yoav Tsori David Andelman 《Journal of polymer science. Part A, Polymer chemistry》2006,44(18):2725-2739
We present few ordering mechanisms in block copolymer melts in the coarse-graining approach. For chemically homogeneous or modulated confining surfaces, the surface ordering is investigated above and below the order–disorder temperature. In some cases, the copolymer deformation near the surface is similar to the copolymer morphology in bulk grain boundaries. Block copolymers in contact with rough surfaces are considered as well, and the transition from lamellae parallel to perpendicular to the surface is investigated as a function of surface roughness. Finally, we describe how external electric fields can be used to align block copolymer mesophases in a desired direction, or to induce an order–order phase transition, and dwell on the role of mobile dissociated ions on the transition. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2725–2739, 2006 相似文献
6.
7.
Lefèvre N Fustin CA Gohy JF 《Langmuir : the ACS journal of surfaces and colloids》2007,23(8):4618-4622
Poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) copolymers and poly(acrylic acid) (PAA) have been mixed in organic solvents. Complexation via hydrogen bonding occurs between the P4VP and PAA blocks. Those insoluble complexes aggregate to form the core of micelles surrounded by a corona of PS chains. Reorganization of these structures occurs upon addition of acidic or basic water, which results in the breaking of the hydrogen bonds between the P4VP and PAA blocks. After transfer of the initial complexes in acidic water, micelles consisting of a PS core and a protonated P4VP corona are observed. In basic water, well-defined nanoparticles formed by the PS-b-P4VP copolymers are obtained. It is demonstrated that these nanoparticles are stabilized by the negatively charged PAA chains. Finally, thermally induced disintegration of the micelles is investigated in organic solvents. 相似文献
8.
It is well-known that a bulk, symmetric, A-b-B diblock copolymer forms a lamellar morphology, with period L, below an order-disorder transition (T(ODT)) temperature, for chiN < 10.5; chi is the Flory-Huggins interaction parameter and N is the degree of polymerization of the copolymer. The ordering temperatures of poly(styrene-b-methyl methacrylate) (PS-b-PMMA) thin film diblock copolymers of thickness h = 2L, supported by SiO(x)/Si substrates, in vacuum environments, are shown to increase beyond the bulk, and estimates of the temperature shifts indicate that small changes of chiN are associated with unusually large shifts of the transition temperature. Further, we find that in compressed CO(2) environments, these films are ordered at temperatures where the films are disordered in vacuum (or air) environments. This latter observation is of particular significance because small molecule diluents, including compressed CO(2), are known to decrease the ODT of the bulk (enhanced miscibility). 相似文献
9.
He‐Lou Xie Xiao Li Jiaxing Ren Camille Bishop Christopher G. Arges Paul F. Nealey 《Journal of Polymer Science.Polymer Physics》2017,55(6):532-541
Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase‐separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of the PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 532–541 相似文献
10.
Aissou K Otsuka I Rochas C Fort S Halila S Borsali R 《Langmuir : the ACS journal of surfaces and colloids》2011,27(7):4098-4103
This paper discusses the self-assembly of rod-coil amylose-b-polystyrene (Mal-b-PS) block copolymer thick and thin films. The nano-organization falls in an interdomain spacing d of about 10 nm, much smaller than flexible-flexible petrol block copolymer systems. Additionally, hydrogen-bonding interactions between carbohydrate rods (amylose) and 4',4-bipyridine (bipy) molecules induces phase transitions. Indeed, adding bipy in maltooctadecaose-block-polystyrene (Mal18-b-PS) copolymers results, at room temperature, in the formation of a lamellar phase having Mal18 bipy-rich nanodomains instead of hexagonal close-packed (HCP) of cylinders made of Mal18, whereas a coexistence of Mal7bipy-rich cylindrical and spherical nanodomains are formed from maltoheptaose-b-polystyrene (Mal7-b-PS) copolymers instead of a poorly organized array of Mal7-based cylinders. On heating, the Mal7bipy-b-PS system shows more rich phase behavior as compared to the Mal7-b-PS one due to weakening of hydrogen bonding with temperature. Such a system is of great interest in developing active layers in light-emitting diodes (LEDs) or in photovoltaic cells to realize devices with an optimal structure, that is, having large interface area and domain size with similar exciton diffusion length (10 nm). 相似文献
11.
Four amphiphilic poly((1,2-butadiene)-block-ethylene oxide) (PB-PEO) diblock copolymers were shown to aggregate strongly and form micelles in an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]). The universal micellar structures (spherical micelle, wormlike micelle, and bilayered vesicle) were all accessed by varying the length of the corona block while holding the core block constant. The nanostructures of the PB-PEO micelles formed in an ionic liquid were directly visualized by cryogenic transmission electron microscopy (cryo-TEM). Detailed micelle structural information was extracted from both cryo-TEM and dynamic light scattering measurements, with excellent agreement between the two techniques. Compared to aqueous solutions of the same copolymers, [BMIM][PF(6)] solutions exhibit some distinct features, such as temperature-independent micellar morphologies between 25 and 100 degrees C. As in aqueous solutions, significant nonergodicity effects were also observed. This work demonstrates the flexibility of amphiphilic block copolymers for controlling nanostructure in an ionic liquid, with potential applications in many arenas. 相似文献
12.
Three symmetrical semicrystalline oxyethylene/oxybutylene block copolymers (EmBn) were spin-coated on different substrates including silicon, hydrophobically modified silicon, and mica. The effects of surface property on the dewetting behavior of EmBn thin films and the chain orientation of the crystalline block were investigated with atomic force microscopy and grazing incidence X-ray diffraction . The EmBn thin films on silicon exhibit an autophobic dewetting behavior, while ordinary dewetting occurs for the thin films on modified silicon. It was observed that the stems of the E crystals in the first half-polymer layer contacting the mica surface were parallel to the surface, in contrast to the perpendicular chain orientation of the other polymer layers and of the first half-polymer layer on silicon. This is attributed to the strong interaction between the E block and mica, verified by infrared spectra. 相似文献
13.
The structure of grafted adsorbing polymers on surfaces is described as a statistical ensemble of loops generated by an one-dimensional random walk perpendicular to the surface. The configuration of each chain is considered as a succession of closed loops ended by an open loop (a tail). The probability of formation of each individual loop is the product between the probability of first return to the surface and a Boltzmann factor containing the free energy of the Flory-Huggins kind, which is approximated by the minimum free energy of all possible configurations of that loop. At high grafting densities, the attractive interactions between monomers and surface control the fraction of polymer belonging to either closed loops or tails, hence the formation of a stretched grafted brush. At low grafting densities, the increase of that interaction above a critical value generates an abrupt collapse of the brush on the surface. Whereas for long polymers (with more than about 100 Kuhn segments), the structure of the brush can be determined, in general, only via Monte-Carlo sampling, it is argued that the two structural transitions indicated above can be well predicted by simple approximations. 相似文献
14.
We combine a simple lattice-gas model for fluid mixtures along with polymer mean-field theory for block copolymer melts to study the stability of thin films of diblock copolymers in the presence of compressible fluid solvents. Using a free energy analysis, the stable and unstable thicknesses of a copolymer thin film are obtained for given solvent conditions. Our results suggest that the interplay between confinement, the compressibility of the solvent, and its selectivity to polymer component can lead to significant changes on the ordering and stability of the diblock copolymer thin films. Our results are in qualitative agreement with recent experimental results. 相似文献
15.
Arya G Rottler J Panagiotopoulos AZ Srolovitz DJ Chaikin PM 《Langmuir : the ACS journal of surfaces and colloids》2005,21(24):11518-11527
We have investigated shear-induced alignment of a bilayer of spherical diblock copolymer micelles within thin films using molecular dynamics simulations at two different levels of coarse-graining. At the microscopic level, the copolymers are modeled as bead and spring chains with specific interaction potentials which produce strongly segregated spherical micelles. The simulations qualitatively reveal that long-range shear-induced ordering of hexagonally arranged micelles arises because of the tendency of micelles to pursue trajectories of minimum frictional resistance against micelles in the opposing layer. This influences their alignment in the direction of shear without them breaking apart and reforming within the time scale of the simulations. As observed in experiments, the ordering is shown to be very sensitive to the film thickness and shearing rates. To access larger lengths and longer time scales, we further coarse-grain our system to a mesoscopic level where an individual micelle is represented by a spherical particle, which interacts with other micelles through an effective potential obtained from the microscopic simulations. This approach enables us to follow the time evolution of global order from locally ordered domains. An exponentially fast growth of the orientational correlation length of the hexagonal pattern at early times, followed by a crossover to linear growth, is found in the presence of shear, in contrast to the much slower power-law scalings observed in experiments without shear. 相似文献
16.
Wei Zhao Yi Zhang Xiao Wang Xiaowen Hu Feng Liu Thomas P. Russell Guofu Zhou 《Journal of polymer science. Part A, Polymer chemistry》2018,56(20):1369-1375
Block copolymer (BCP) films with long-range lateral ordering and orientation are crucial for many applications. Here, we report a simple, versatile strategy based on a solution casting procedure, to produce millimeter thick film of BCPs with highly oriented nanostructures. Transmission electron microscope (TEM), small angle X-ray scattering (SAXS), and Hansen solubility parameters were used to study the morphology and interactions of the system. A variety of BCP-solvent pairs were investigated. Factors including set-up geometry, BCP characteristics, solvent evaporation, surface tension, and interactions, such as solvent-BCP, solvent-substrate, and BCP-substrate were examined. A mechanism is proposed to describe the observed long-range lateral ordering and orientation in films up to 1 mm in thickness. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1369–1375 相似文献
17.
Self-assembled lamellar structures composed of block copolymers are simulated by molecular dynamics. The response of a bulk system to external shear is investigated, in particular, the average energy, the entropy production, and the stability of the lamellae's orientation. We distinguish two orientations, a parallel orientation in which the normal to the lamellae sheets lies in the direction of the shear gradient, and a perpendicular orientation in which the normal lies perpendicular to the shear gradient and shear direction. The perpendicular phase is stable throughout all shear rates. The parallel phase has higher internal energy and larger entropy production than the perpendicular phase and moreover becomes unstable at relatively small shear rates. The perpendicular orientation should therefore be more stable at any finite shear rate. Surface effects are probably responsible for the stability of the parallel phase observed experimentally at small shear rates. 相似文献
18.
He‐Lou Xie Xiao Li Hyo Seon Suh Jia‐Xing Ren Ling‐Shu Wan Gordon S. W. Craig Christopher G. Arges Paul F. Nealey 《Journal of Polymer Science.Polymer Physics》2017,55(21):1569-1574
An easily removable, water‐soluble top coat of polyvinylpyrrolidone (PVP) is used to control the orientation of microdomains in a liquid crystalline block copolymer (LC BCP, poly(ethylene oxide)‐block‐poly(6‐(4‐methoxy‐azobenzene‐4′‐butyl) hexyl methacrylate)). The corresponding LC homopolymer is also investigated for comparison. Atomic force microscopy is used to determine the orientation of the cylindrical microdomains of the LC BCP. UV–vis spectroscopy and grazing incidence wide‐angle X‐ray scattering are used to determine the orientation of the LC mesogens in the LC homopolymer and the LC BCP films annealed both with and without a top coat. Once the LC BCP morphology is self‐assembled, the PVP top coat layer can be easily removed with water or alcohol. The facile removal of the top coat improves the processability of BCPs in technological applications, and enables direct investigation of the BCP morphology in scientific studies. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1569–1574 相似文献
19.
R. J. Spontak 《Colloid and polymer science》1989,267(9):808-817
The fact that microstructures form in microphase-separated block copolymers, endowing the materials with unique thermo-mechanical properties, is well-established. However, no thermodynamic theories directly address the problem of microstructural development in ultrathin films, which might be useful as adhesives or resists. To predict the microstructural dimensions in such films, a model based on unit-cell geometries and material/volume balances is developed. Predictions of the ratio of the characteristic length of the domain core to domain repeat distance are obtained for poly (styrene-butadiene) diblock (SB) copolymers at 298 K. The finite interphase region is included in the volume balances with the parameterf, the volume fraction of interphase material, obtained from a modified version of the Leary-Henderson-Williams thermodynamic theory and shown here not to be a strong function of composition. An approach, implementingf, for accurately estimating the critical molecular weight of microphase separation in the strong-segregation limit (M
c
), as a function of bulk composition for monodisperse SB copolymers at 298 K, is also presented. 相似文献
20.
We examine the morphological structures of asymmetric poly(ethylene oxide)-b-poly(1,1'-dihydroperflurooctyl methacrylate) (PEO-b-PFOMA) thin films upon annealing in a compressible fluid, supercritical CO2 (Sc-CO2). The strong affinity between PFOMA and CO2 is found to induce phase segregation when annealing PEO-b-PFOMA films at the same temperature as compared with vacuum. In vacuum, PEO-b-PFOMA films remain disordered from 80 to 180 degrees C, whereas, in Sc-CO2 at 13.9 MPa, an upper order-disorder transition (UODT) between 116 and 145 degrees C is found. In Sc-CO2, the observed ordered structure is layers of PEO spheres embedded in the matrix of PFOMA, followed by a brush layer, in which PEO wets the substrate. The swelling isotherms of PFOMA and PEO in CO2 are correlated with the Sanchez-Lacombe equation of state (SLEOS) to estimate the interaction parameters, XPFOMA-CO2 and XPEO-CO2. The phase segregation (order) induced by CO2 relative to vacuum at a given temperature is explained in terms of two factors: (1) copolymer volume fraction upon dilution with CO2, phi, and (2) the relative interaction parameter, DeltaX= XPEO-CO2 - XPFOMA-CO2. The latter factor favors order and is dominant at low temperatures over the phi factor, which always favors disorder. At high temperatures (above the T(ODT)), the preferential swelling of PFOMA by CO2 is less pronounced ( DeltaX decreases), and the copolymer is disordered. 相似文献